Advertisement

Cell Biochemistry and Biophysics

, Volume 31, Issue 1, pp 19–48 | Cite as

Structure and function of metal chelators produced by plants

The case for organic acids, amino acids, phytin, and metallothioneins
  • Wilfried E. Rauser
Article

Abstract

Plants produce a range of ligands for cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn). Cd- and Zn-citrate complexes are prevalent in leaves, even though malate is more abundant. In the xylem sap moving from roots to leaves, citrate and histidine are the principal ligands for Cu, Ni, and Zn. Phosphorus-rich globular bodies in young roots are probably Zn-phytate. Metallothioneins (MTs) are cysteine (Cys)-rich ligands. Plants produce class II MTs (MT-IIs) which differ from the archetypal mammalian MT-I in the location and number of Cys. The Ec protein from wheat embryos has Cys in three domains, binds Zn, and disappears with seedling development. The first 59 amino acids have been sequenced for the protein. Fifty-eight genes for MT-IIs, from a range of plants and tissues, predict proteins with Cys in two domains. Most of the predicted proteins have not been isolated, and their metal binding is poorly documented. Three protein bands, corresponding to six MT genes, have been isolated fromArabidopsis, and the amino acids sequenced for nine fragments. The MT-IIIs are atypical, nontranslationally synthesized polypeptides with variously repeating γ-glutamylcysteine units. Of the five families known, those with carboxy-terminal glycine are the most widespread among plants, algae, and certain yeasts. A heterogeneous grouping of these molecules form Cd-binding complexes with tetrahedral coordination and a Cd-sulfur interatomic distance of 2.52 Å. One complex is cytosolic, the dominant one is vacuolar. Together, they can bind a large proportion of cellular Cd; other ligands may also function. Little is known about the counterpart situation for Cu and Zn.

Index Entries

Cadmium zinc chelation citrate malate histidine phytin plant metallothionein phytochelatin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nieboer, E. and Richardson, D. H. S. (1980) Replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions.Environ. Pollut. Ser. B 1, 3–26.Google Scholar
  2. 2.
    Antonovics, J., Bradshaw, A. D., and Turner, R. G. (1971) Heavy metal tolerance in plants.Adv. Ecol. Res. 7, 1–85.Google Scholar
  3. 3.
    Ernst, W. H. O., Verkleij, J. A. C., and Schat, H. (1992) Metal tolerance in plants.Acta Bot. Neerl. 41, 229–248.Google Scholar
  4. 4.
    Macnair, M. R. (1993) Genetics of metal tolerance in vascular plants.New Phytol. 124, 541–559.Google Scholar
  5. 5.
    Wagner, G. J. (1993) Accumulation of cadmium in crop plants and its consequences to human health.Adv. Agron. 51, 173–212.Google Scholar
  6. 6.
    Florijn, P. J. and Van Beusichem, M. L. (1993) Uptake and dristribution of cadmium in maize inbred lines.Plant Soil 150, 25–32.Google Scholar
  7. 7.
    Salt, D. E., Blaylock, M., Kumar, N. P. B. A., Dushenkov, V., Ensley, B. D., Chet, I., and Raskin, I. (1995) Phytoremediation, a novel strategy for the removal of toxic metals from the environment using plants.Biotechnology 13, 468–474.PubMedGoogle Scholar
  8. 8.
    Rauser, W. E. (1987) Compartmental efflux analysis and removal of extracellular cadmium from roots.Plant Physiol. 85, 62–65.PubMedGoogle Scholar
  9. 9.
    Pellet, D. M., Papernik, L. A., and Kochian, L. V. (1996) Multiple aluminum-resistance mechanisms in wheat.Plant Physiol. 112, 591–597.PubMedGoogle Scholar
  10. 10.
    Jorge, R. A. and Arruda, P. (1997) Aluminum-induced organic acids exudation by roots of an aluminum-tolerant tropical maize.Phytochem.45, 675–681.Google Scholar
  11. 11.
    Archambault, D. J., Zhang, G., and Taylor, G. J. (1996) Accumulation of Al in root mucilage of an Al-resistant and an Al-sensitive cultivar of wheat.Plant Physiol. 172, 1471–1478.Google Scholar
  12. 12.
    Meharg, A. A. (1993) The role of the plasma membrane in metal tolerance in angiosperms.Physiol. Plant. 88, 191–198.Google Scholar
  13. 13.
    Davies, K. L., Davies, M. S., and Francis, D. (1992) Zn-induced vacuolation in root meristematic cells of cereals.Ann. Bot. 69, 21–24.Google Scholar
  14. 14.
    Macklon, A. E. S. (1975) Cortical cell fluxes and transport to the stele in excised root segments ofAllium cepa L. I. Potassium, sodium and chloride.Planta 122, 109–130.Google Scholar
  15. 15.
    Ernst, W. H. O. (1975) Physiology of heavy metal resistance in plants. International Conference Heavy Metals in the Environment, Toronto, Vol.II Part 1. pp. 121–136.Google Scholar
  16. 16.
    Mathys, W. (1977) The role of malate, oxalate, and mustard oil glucosides in the evolution of zinc-resistance in herbage plants.Physiol. Plant. 40, 130–136.Google Scholar
  17. 17.
    Thurman, D. A. and Rankin, J. L. (1982) The role of organic acids in zinc tolerance inDeschampsia caespitosa.New Phytol. 91, 629–635.Google Scholar
  18. 18.
    Godbold, D. L., Horst, W. J., Collins, J. C., Thurman, D. A., and Marschner, H. (1984) Accumulation of zinc and organic acids in roots of zinc tolerant and non-tolerant ecotypes ofDeschampsia caespitosa.J. Plant Physiol. 116, 59–69.Google Scholar
  19. 19.
    Wang, J., Evangelou, B. P., Nielsen, M. T., and Wagner, G. J. (1991) Computer-simulated evaluation of possible mechanisms for quenching heavy metal ion activity in plant vacuoles. I. Cadmium.Plant Physiol. 97, 1154–1160.PubMedGoogle Scholar
  20. 20.
    Wang, J., Evangelou, B. P., Nielsen, M. T., and Wagner, G. J. (1992) Computer-simulated evaluation of possible mechanisms for sequenstering ion activity in plant vacuoles. II. Zinc.Plant Physiol. 99, 621–626.PubMedGoogle Scholar
  21. 21.
    Krotz, R. M., Evangelou, B. P., and Wagner, G. J. (1989) Relationship between cadmium, zinc, Cd-peptide, and organic acid in tobacco suspension cells.Plant Physiol. 91, 780–787.PubMedGoogle Scholar
  22. 21a.
    Parker, D. R., Chaney, R. L., and Norvel, W. A. (1995) Chemical equilibrium models: applications to plant nutrition research, In: Chemical equilibrium and reaction models (Loeppert, R. H, Schwab, A. P., and Goldberg, S., eds.). Soil Science Society of America Special Publication Number 42, WI. pp. 163–200.Google Scholar
  23. 22.
    Vögeli-Lange, R. and Wagner, G. J. (1990) Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Implication of a transport function for cadmium-binding peptides.Plant Physiol. 92, 1086–1093.PubMedGoogle Scholar
  24. 23.
    Mullins, G. L., Sommers, L. E., and Housley, T. L. (1986) Metal speciation in xylem and phloem exudates.Plant Soil 96, 377–391.Google Scholar
  25. 24.
    Salt, D. E., Prince, R. C., Pickering, I. J., and Raskin, I. (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard.Plant Physiol. 109, 1427–1433.PubMedGoogle Scholar
  26. 25.
    Lee, J., Reeves, R. D., Brooks, R. R., and Jaffré, T. (1978) The relation between nickel and citric acid in some nickel-accumulating plants.Phytochemistry 17, 1033–1035.Google Scholar
  27. 26.
    Lee, J., Reeves, R. D., Brooks, R. R., and Jaffré, T. (1977) Isolation and identification of a citrato-complex of nickel from nickel-accumulating plants.Phytochemistry 16, 1503–1505.Google Scholar
  28. 27.
    Kersten, W. J., Brooks, R. R., Reeves, R. D., and Jaffré, T. (1980) Nature of nickel complexes inPsychotria douarrei and other nickel-accumulating plants.Phytochemistry 19, 1963–1965.Google Scholar
  29. 28.
    Sanger, S., Kneer, R., Wanner, G., Cosson, J.-P., Deus-Neumann, B., and Zenk, M. H. (1998) Hyperaccumulation, complexation and distribution of nickel inSebertia acuminata.Phytochemistry 47, 339–347.Google Scholar
  30. 29.
    Krämer, U., Cotter-Howells, J. D., Charnock, J. M., Baker, A. J. M., and Smith, J. A. C. (1996) Free histidine as a metal chelator in plants that accumulate nickel.Nature 379, 635–638.Google Scholar
  31. 30.
    Lott, J. N. A., Greenwood, J. S., and Batten, G. D. (1995) Mechanisms and regulation of mineral nutrient storage during seed development, inSeed Development and Germination (Kigel, J. and Gallili, G., eds.), Marcel Dekker, New York, pp. 215–235.Google Scholar
  32. 31.
    Lott, J. N. A., Goodchild, D. J., and Craig, S. (1984) Studies of mineral reserves in pea (Pisum sativum) cotyledons using low-water-content procedures.Aust. J. Plant Physiol. 11, 459–469.Google Scholar
  33. 32.
    Collier, H. B. (1981) A Zn2+ binding constituent of fababeans.Biochim. Biophys. Acta 675, 427–429.PubMedGoogle Scholar
  34. 33.
    Van Steveninck, R. F. M., Van Steveninck, M. E., Fernando, D. R., Horst, W. J., and Marschner, H. (1987) Deposition of zinc phytate in globular bodies in roots ofDeschampsia caespitosa ecotypes: a detoxification mechanism?J. Plant Physiol. 131, 247–257.Google Scholar
  35. 34.
    Van Steveninck, R. F. M., Van Steveninck, M. E., Wells, A. J., and Fernando, D. R. (1990) Zinc tolerance and the binding of zinc as zinc phytate inLemna minor. X-ray microanalytical evidence.J. Plant Physiol. 137, 140–146.Google Scholar
  36. 35.
    Van Steveninck, R. F. M., Van Steveninck, M. E., Fernando, D. R., Edwards, L. B., and Wells, A. J. (1990) Electron probe X-ray microanalytical evidence for two distinct mechanisms of Zn and Cd in a Zn tolerant clone ofLemna minor.C.R. Acad. Sci. Paris 310, 671–678.Google Scholar
  37. 36.
    Van Steveninck, R. F. M., Babare, A., Fernando, D. R., and Van Steveninck, M. E. (1993) The binding of zinc in root cells of crop plants by phytic acid.Plant Soil 155/156, 525–528.Google Scholar
  38. 37.
    Van Steveninck, R. F. M., Babare, A., Fernando, D. R., and Van Steveninck, M. E. (1994) The binding of Zn, but not cadmium, by phytic acid in roots of crop plants.Plant Soil 167, 157–164.Google Scholar
  39. 38.
    Hamer, D. H. (1986) Metallothionein.Annu. Rev. Biochem. 55, 913–951.PubMedGoogle Scholar
  40. 39.
    Suzuki, K. T., Imura, N., and Kimura, M., eds. (1993)Metallothionein III: Biological Roles and Medical Applications, Birkhäuser Verlag, Basel.Google Scholar
  41. 40.
    Riordan, J. F. and Vallee, B. L., eds. (1991)Methods in Enzymology Metallobiochemistry Part B Metallothionein and Related Molecules, Academic Press, New York, 205: pp. 1–681.Google Scholar
  42. 41.
    Rauser, W. E. (1990) Phytochelatins.Annu. Rev. Biochem. 59, 61–86.PubMedGoogle Scholar
  43. 42.
    Steffens, J. C. (1990) The heavy metal-binding peptides of plants.Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 553–575.Google Scholar
  44. 43.
    Robinson, N. J., Tommey, A. M., Kuske, C., and Jackson, P. J. (1993) Plant metallothioneins.Biochem. J. 295, 1–10.PubMedGoogle Scholar
  45. 44.
    Prasad, M. N. V. (1995) Cadmium toxicity and tolerance in vascular plants.Environ. Exp. Bot. 35, 525–545.Google Scholar
  46. 45.
    Rauser, W. E. (1995) Phytochelatins and related peptides Structure, biosynthesis, and function.Plant Physiol. 109, 1141–1149.PubMedGoogle Scholar
  47. 46.
    Kägi, J. H. R. (1993) Evolution, structure and chemical activity of class I metallothioneins, an overview, inMetallothionein III: Biological Roles and Medical Implications (Suzuki, K. T., Imura, N., and Kimura, M., eds.), Birkhäuser Verlag, Basel, Switzerland, pp. 29–55.Google Scholar
  48. 47.
    Hanley-Bowdin, L. and Lane, B. G. (1983) A novel protein programmed by the mRNA conserved in dry wheat embryos. The principal site of cysteine incorporation during early germination.Eur. J. Biochem. 135, 9–15.Google Scholar
  49. 48.
    Hoffman, T., Kells, D. I. C., and Lane, B. G. (1984) Partial amino acid sequence of the wheat germ Ec protein. Comparison with another protein very rich in half-cystine and glycine, wheat germ agglutinin.Can. J. Biochem. Cell Biol. 62, 908–913.Google Scholar
  50. 49.
    Lane, B., Kajioka, R., and Kennedy, T. (1987) The wheat-germ Ec protein is a zinc-containing metallothionein.Biochem. Cell Biol. 65, 1001–1005.Google Scholar
  51. 50.
    Kawashima, I., Kennedy, T. D., Chino, M., and Lane, B. G. (1992) Wheat Ec metallothionein genes Like mammalian Zn2+ metallothionein genes, wheat Zn2+ metallothionein genes are conspicuously expressed during embryogenesis.Eur. J. Biochem. 209, 971–976.PubMedGoogle Scholar
  52. 51.
    White, C. N. and Rivin, C. J. (1995) Characterization and expression of a cDNA encoding a seed-specific metallothionein in maize.Plant Physiol. 108, 831–832.PubMedGoogle Scholar
  53. 52.
    Reynolds, T. L. and Crawford, R. L. (1996) Changes in abundance of an abscisic acid-responsive, early cysteine-labeled metallothionein transcript during pollen embryogenesis in bread wheat (Triticum aestivum).Plant Mol. Biol. 32, 823–829.PubMedGoogle Scholar
  54. 53.
    de Miranda, J. R., Thomas, M. A., Thurman, D. A., and Tomsett, A. B. (1990) Metallothionein genes from the flowering plantMimulus guttatus.FEBS Lett. 260, 277–280.PubMedGoogle Scholar
  55. 54.
    Evans, I. M., Gatehouse, L. N., Gatehouse, J. A., Robinson, N. J., and Croy, R. R. D. (1990) A gene from pea (Pisum sativum L.) with homology to metallothionein genes.FEBS Lett. 262, 29–32.PubMedGoogle Scholar
  56. 55.
    Okumura, N., Nishizawa, N.-K., Umehara, Y., and Mori, S. (1991) An iron deficiency-specific cDNA from barley roots having two homologous cysteine-rich MT domains.Plant Mol. Biol. 17, 531–533.PubMedGoogle Scholar
  57. 56.
    Nakanishi, H., Okumura, N., Kanegae, R., Umehara, Y., Nishizawa, N.-K., and Mori, S. (1995) A plant metallothionein-like gene from iron deficiency barley roots. GenBank Accession No. D50641.Google Scholar
  58. 57.
    de Framond, A. J. (1991) A metallothionein-like gene from maize (Zea mays). Cloning and characterization.FEBS Lett. 290, 103–106.PubMedGoogle Scholar
  59. 58.
    Chevalier, C., Bourgeois, E., Pradet, A., and Raymond, P. (1995) Molecular cloning and characterization of six cDNAs expressed during glucose starvation in excised maize (Zea mays L.) root tips.Plant Mol. Biol. 28, 473–485.PubMedGoogle Scholar
  60. 59.
    Snowden, K. C. and Gardner, R. C. (1993) Five genes induced by aluminum in wheat (Triticum aestivum L.) roots.Plant Physiol. 103, 855–861.PubMedGoogle Scholar
  61. 60.
    Ellison, N. W. (1993) Sequence analysis of two cDNA clones encoding metallothionein-like proteins from white clover (Trifolium repens L). GenBank Accession No Z26493.Google Scholar
  62. 61.
    Zhou, J. and Goldsbrough, P. B. (1994) Functional homologs of fungal metallothionein genes fromArabidopsis.Plant Cell 6, 875–884.PubMedGoogle Scholar
  63. 62.
    Zhou, J. and Goldsbrough, P. B. (1995) Structure, organization and expression of the metallothionein gene family inArabidopsis.Mol. Gen. Genet.,248, 318–328.PubMedGoogle Scholar
  64. 63.
    Yeh, S.-C., Hsieh, H.-M., and Huang, P. C. (1995) Transcripts of metallothionein genes inArabidopsis thaliana.DNA Sequence—J. Seq. Map. 5, 141–144.Google Scholar
  65. 64.
    Buchanan-Wollaston, V. (1994) Isolation of cDNA clones for genes that are expressed during leaf senescence inBrassica napus. Identification of a gene encoding a senescence-specific metallothionein-like protein.Plant Physiol. 105, 839–846.PubMedGoogle Scholar
  66. 65.
    Hsieh, H.-M., Liu, W.-K., and Huang P. C. (1995) A novel stress-inducible metallothionein-like gene from rice.Plant Mol. Biol. 28, 381–389.PubMedGoogle Scholar
  67. 66.
    Lee, M. C., Kim, C. S., and Eun, M. Y. (1997) Characterization of metallothionein-like protein from rice. GenBank Accession No. AF017366.Google Scholar
  68. 67.
    Hudspeth, R. L., Hobbs, S. L., Anderson, D. M., Rajasekaran, K., and Grula, J. W. (1996) Characterization and expression of metallothionein-like genes in cotton.Plant Mol. Biol. 31, 701–705.PubMedGoogle Scholar
  69. 68.
    Foley, R. C., Liang, Z. M., and Singh, K. B. (1997) Analysis of type 1 metallothionein cDNAs inVicia faba.Plant Mol. Biol. 33, 583–591.PubMedGoogle Scholar
  70. 69.
    Ma, M., Tsang, W.-K., Lau, P.-S., and Wong, Y.-S. (1997) Cloning and sequencing of the metallothionein-like cDNA fromFestuca rubra cv. Merlin. GenBank Accession No. U96646.Google Scholar
  71. 70.
    Kawashima, I., Inokuchi, Y., Chino, M., Kimura, M., and Shimizu, N. (1991) Isolation of a gene for a metallothionein-like protein from soybean.Plant Cell Physiol. 32, 913–916.Google Scholar
  72. 71.
    Takahashi, K. (1991) GenBank Accession No. X62818.Google Scholar
  73. 72.
    Weig, A. and Komor, E. (1992) Isolation of a class II metallothionein cDNA fromRicinus communis L. GenBank Accession No. L02306.Google Scholar
  74. 73.
    Foley, R. C. and Singh, K. B. (1994) Isolation of aVicia faba metallothionein-like gene, expression in foliar trichomes.Plant Mol. Biol. 26, 435–444.PubMedGoogle Scholar
  75. 74.
    Ledger, S. E. and Gardner, R. C. (1994) Cloning and characterization of five cDNAs for genes differentially expressed during fruit development of kiwifruit (Actinidia deliciosa var.deliciosa).Plant Mol. Biol. 25, 877–886.PubMedGoogle Scholar
  76. 75.
    Moisyadi, S. and Stiles, J. I. (1995) A cDNA encoding a metallothionein 1-like protein from coffee leaves (Coffea arabica).Plant Physiol. 107, 295–296.PubMedGoogle Scholar
  77. 76.
    Kim, H. U., Kim, J. B., Yun, C. H., Kang, S. K., and Chung, T. Y. (1995) Nucleotide sequence of cDNA clone encoding a metallothionein-like protein from Chinese cabbage.Plant Physiol. 108, 863.PubMedGoogle Scholar
  78. 77.
    Coupe, S. A., Taylor, J. E., and Roberts, J. A. (1995) Characterisation of an mRNA encoding a metallothionein-like protein that accumulates during ethylene-promoted abscission ofSambucus nigra L. leaflets.Planta 197, 442–447.PubMedGoogle Scholar
  79. 78.
    LaRosa, P. C. and Smigocki, A. C. (1995) A plant metallothionein is modulated by cytokinin. GenBank Accession No. U35225.Google Scholar
  80. 79.
    Choi, D., Kim, H. M., Yun, H. K., Park, J.-A., Kim, W. T., and Bok, S. H. (1996) Molecular cloning of a metallothionein-like gene fromNicotiana glutinosa L. and its induction by wounding and tobacco mosaic virus infection.Plant Physiol. 112, 353–359.PubMedGoogle Scholar
  81. 80.
    Ellison, N. W. and White, D. W. R. (1996) Isolation of two cDNA clones encoding metallothionein-like proteins fromTrifolium repens L.Plant Physiol. 112, 446. GenBank Accession No. Z26492Google Scholar
  82. 81.
    Kitashiba, H., Iwai, T., Toriyama, K., Watanabe, M., and Hinata, K. (1996) Identification of genes expressed in the shoot apex ofBrassica campestris during floral transition.Sex. Plant Reprod. 9, 186–188.Google Scholar
  83. 82.
    Hsieh, H.-M., Liu, W.-K., Chang, A., and Huang, P. C. (1996) RNA expression patterns of a type 2 metallothionein-like gene from rice.Plant Mol. Biol. 32, 525–529.PubMedGoogle Scholar
  84. 83.
    Giritch, A., Herbik, A., Balzer, H., Stephan, U., and Baumlein, H. (1995) Cloning and characterization of metallothionein-like genes family from tomato. GenBank Accession Nos. Z68138, Z68309, Z68310.Google Scholar
  85. 84.
    Whitelaw, C. A., Le Huquet, A., Thurman, D. A., and Tomsett, A. B. (1997) The isolation and characterization of type II metallothionein-like genes from tomato (Lycopersicon esculentum L.).Plant Mol. Biol. 33, 504–511.Google Scholar
  86. 85.
    Buchanan-Wollaston, V. and Ainsworth, C. (1997) Leaf senescence inBrassica napus, cloning of senescence related genes by subtractive hybridisation.Plant Mol. Biol. 33, 821–834.PubMedGoogle Scholar
  87. 86.
    Schaefer, H. J., Haag-Kerwer, A., and Rausch, T. (1997) cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy metal accumulatorBrassica juncea L., evidence for Cd-induction of putative mitochondrial γ-glutamylcysteine synthetase isoform. GenBank Accession Nos. Y10849, Y10850, Y10851, Y10852.Google Scholar
  88. 87.
    Mbeguie-A-Mbeguie, D., Gomez, R.-M., and Fils-Lycaon, B. (1997) Molecular cloning and nucleotide sequence of an abscisic acid-, ripening-induced (ASR)-like protein from apricot fruit (Accession No. U93164). Gene expression during fruit ripening.Plant Physiol. 115, 1288.Google Scholar
  89. 88.
    Davies, E. C. and Thomas, J. C. (1997) A metallothionein from a facultative halophyte confers copper tolerance. GenBank Accession No. AF000935.Google Scholar
  90. 89.
    Lee, M. C., Park, J. Y., Kim, Y. H., and Eun, M. Y. (1996) Molecular cloning and characterization of metallothionein-like protein in rice. GenBank Accession Nos. Y08529, U77294.Google Scholar
  91. 90.
    Yu, L., Umeda, M., Liu, J. Zhao, N., and Uchiimiya, H. (1997) Characterization of a novel metallothionein-like protein gene with strong expression in the stem of rice. GenBank Accession No. AB002820.Google Scholar
  92. 91.
    Lee, M. C., Kim, C. S., and Eun, M. Y. (1997) Characterization of metallothionein-like protein from rice. GenBank Accession No. AF017365.Google Scholar
  93. 92.
    Reid, S. J. and Ross, G. S. (1996) Two cDNA clones encoding metallothionein-like proteins in apple are upregulated during cool storage. GenBank Accession No. U61974.Google Scholar
  94. 93.
    Rosenfield, C. L., Kiss, E., and Hrazdina, G. (1996) MdACS-2 (Accession No. U73815) and MdACS-3 (Accession No. U73816), two new 1-aminocyclopropane-1-carboxylate synthase in ripening apple fruit.Plant Physiol. 112, 1735. GenBank Accession No. Y08322.Google Scholar
  95. 94.
    Clendennen, S. K. and May, G. D. (1997) Differential gene expression in ripening banana fruit.Plant Physiol. 115, 463–469.PubMedGoogle Scholar
  96. 95.
    Lee, M. C., Lee, J. S., Yi, B. Y., and Eun, M. Y. (1997) Molecular cloning and characterization of metallothionein-like protein from rice. GenBank Accession Nos. AF001396, AF009959.Google Scholar
  97. 95a.
    Wiersma, P. A., Wu, Z., and Wilson, S. M. (1998) A fruit-related metallothionein-like cDNA clone from sweet cherry (Accession No. AF028013) corresponds to fruit genes from diverse species.Plant Physiol. 116, 867.Google Scholar
  98. 96.
    Murphy, A., Zhou, J., Goldsbrough, P. B., and Taiz, L. (1997) Purification and immunological identification of metallothioneins 1 and 2 fromArabidopsis thaliana.Plant Physiol. 113, 1293–1301.PubMedGoogle Scholar
  99. 97.
    Giritch, A., Herbik, A., Balzer, H., Stephan, U., and Baumlein, H. (1995) Cloning and characterization of metallothionein-like genes family from tomato. GenBank Accession No. Z68185.Google Scholar
  100. 98.
    Chatthai, M., Kaukinen, K. H., Tranbarger, T. J., Gupta, P. K., and Misra, S. (1997) The isolation of a novel metallothionein-related cDNA expressed in somatic and zygotic embryos of Douglas-fir, regulation by ABA, osmoticum, and metal ions.Plant Mol. Biol. 34, 243–254.PubMedGoogle Scholar
  101. 99.
    Aguilar, M., Osuna, D., Caballero, J. L., and Munoz, J. (1997) Isolation of a cDNA encoding metallothionein-like protein (Accession No. U81041) from strawberry fruit.Plant Physiol. 113, 664.Google Scholar
  102. 100.
    Kusaba, M., Takahashi, Y., and Nagata, T. (1996) A multiple-stimuli-responsive as-1-related element ofparA gene confers responsiveness to cadmium but not to copper.Plant Physiol. 111, 1161–1167.PubMedGoogle Scholar
  103. 101.
    Tommey, A. M., Shi, J., Lindsay, W. P., Urwin, P. E., and Robinson, N J. (1991) Expression of the pea genePsMT A inE. coli Metal-binding properties of the expressed protein.FEBS Lett. 292, 48–52.PubMedGoogle Scholar
  104. 102.
    Evans, K. M., Gatehouse, J. A., Lindsay, W. P., Shi, J., Tommey, A. M., and Robinson, N. J. (1992) Expression of the pea metallothionein-like genePsMT A inEscherichia coli andArabidopsis thaliana and analysis of trace metal ion accumulation, implications forPsMT A function.Plant Mol. Biol. 20, 1019–1028.PubMedGoogle Scholar
  105. 103.
    Robinson, N. J., Wilson, J. R., and Turner, J. S. (1996) Expression of the type 2 metallothionein-like geneMT2 fromArabidopsis thaliana in Zn2+-metallothionein-deficientSynechococcus PCC 7942, putative role for MT2 in Zn2+ metabolism.Plant Mol. Biol. 30, 1169–1179.PubMedGoogle Scholar
  106. 104.
    Kille, P., Winge, D. R., Harwood, J. L., and Kay, J. (1991) A plant metallothionein produced inE. coli.FEBS Lett. 295, 171–175.PubMedGoogle Scholar
  107. 105.
    Nielson, K. B. and Winge, D. R. (1983) Order of metal binding in metallothionein.J. Biol. Chem. 258, 13,063–13,069.Google Scholar
  108. 106.
    Murphy, A. and Taiz, L. (1995) Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes.Plant Physiol. 109, 945–954.PubMedGoogle Scholar
  109. 106a.
    Cizewski Cullota, V., Klomp, L. W. J., Strain, J., Casareno, R. L. B., Krems, B., and Gitlin, J. D. (1997) The copper chaperone for superoxide dismutase.J. Biol. Chem. 272, 23,469–23,472.Google Scholar
  110. 106b.
    Pufahl, R. A., Singer, C. P., Peariso, K. L., Lin, S.-J., Schmidt, P. J., Fahrni, C. J., et al. (1997) Metal ion chaperone function of the soluble Cu(I) receptor Atx1.Science 278, 853–856.PubMedGoogle Scholar
  111. 106c.
    Glerum, D. M., Shtanko, A., and Tzagoloff, A. (1996) Characterization ofCOX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase.J. Biol. Chem. 271, 14,504–14,509.Google Scholar
  112. 107.
    Kondo, N., Imai, K., Isobe, M., Goto, T., Murasugi, A., Wada-Nakagawa, C., and Hayashi, Y. (1984) Cadystin A and B, major unit peptides comprising cadmium binding peptides induced in a fission yeast—separation, revision of structures and synthesis.Tetrahed. Lett. 25, 3869–3872.Google Scholar
  113. 108.
    Grill, E., Winnacker, E.-L., and Zenk, M. H. (1985) Phytochelatins, the principal heavy-metal complexing peptides of higher plants.Science 230, 674–676.PubMedGoogle Scholar
  114. 109.
    Grill, E., Winnacker, E.-L., and Zenk, M. H. (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins.Proc. Natl. Acad. Sci. U.S.A. 84, 439–443.PubMedGoogle Scholar
  115. 110.
    Gekeler, W., Grill, E., Winnacker, E.-L., and Zenk, M. H. (1988) Algae sequester heavy metals via synthesis of phytochelatin complexes.Arch. Microbiol. 150, 197–202.Google Scholar
  116. 111.
    Gekeler, W., Grill, E., Winnacker, E.-L., and Zenk, M. H. (1989) Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins.Z. Naturforsch. 44c, 361–369.Google Scholar
  117. 112.
    Grill, E., Winnacker, E.-L., and Zenk, M. H. (1988) Occurrence of heavy metal binding phytochelatins in plants growing in a mining refuse area.Experientia 44, 539–540.Google Scholar
  118. 113.
    Gawel, J. E., Ahner, B. A., Friedland, A. J., and Morel, F. M. M. (1996) Role for heavy metals in forest decline indicated by phytochelatin measurements.Nature 381, 64–65.Google Scholar
  119. 114.
    Ahner, B. A., Price, N. M., and Morel, F. M. M. (1994) Phytochelatin production by marine phytoplankton at low free metal ion concentrations, laboratory studies and field data from Massachusetts Bay.Proc. Natl. Acad. Sci. U.S.A. 91, 8433–8436.PubMedGoogle Scholar
  120. 115.
    Grill, E., Winnacker, E.-L., and Zenk, M. H. (1986) Synthesis of seven different homologous phytochelatins in metal-exposedSchizosaccharomyces pombe cells.FEBS Lett. 197, 115–120.Google Scholar
  121. 116.
    Reese, R. N., Mehra, R. J., Tarbet, E. B., and Winge, D. R. (1988) Studies on the γ-glutamyl Cu-binding peptide fromSchizosaccharomyces pombe.J. Biol. Chem. 263, 4186–4192.PubMedGoogle Scholar
  122. 117.
    Mehra, R. J., Tarbet, E. B., Gray, W. R., and Winge, D. R. (1988) Metal-specific synthesis of two metallothioneins and γ-glutamyl peptides inCandida glabrata.Proc. Natl. Acad. Sci. U.S.A. 85, 8815–8819.PubMedGoogle Scholar
  123. 118.
    Kneer, R., Kutchan, T. M., Hochberger, A., and Zenk, M. H. (1992)Saccharomyces cerevisiae andNeurospora crassa contain heavy metal sequestering phytochelatin.Arch. Microbiol. 157, 305–310.PubMedGoogle Scholar
  124. 119.
    Grill, E., Gekeler, W., Winnacker, E.-L., and Zenk, M. H. (1986) Homo-phytochelatins are heavy metal-binding peptides of homo-glutathione containing Fabales.FEBS Lett. 205, 47–50.Google Scholar
  125. 120.
    Mehra, R. K. and Winge, D. R. (1988) Cu(I) binding to theSchizosaccharomyces pombe γ-glutamyl peptides varying in chain lengths.Arch. Biochem. Biophys. 265, 381–389.PubMedGoogle Scholar
  126. 121.
    Barbas, J., Santhanagopalan, V., Blaszczynski, M., Ellis Jr., W. R., and Winge, D. R. (1992) Conversion in the peptides coating cadmium:sulfide crystallites inCandida glabrata.J. Inorg. Biochem. 48, 95–105.PubMedGoogle Scholar
  127. 122.
    Kubota, H., Sato, K., Yamada, T., and Maitani, T. (1995) Phytochelatins (class III metallothioneins) and their desglycyl peptides induced by cadmium in normal root cultures ofRubia tinctorum L.Plant Sci. 106, 157–166.Google Scholar
  128. 123.
    Klapheck, S., Fliegner, W., and Zimmer, I. (1994) Hydroxymethyl-phytochelatins [(γ-gluta-mylcysteine)n-serine] are metal-induced peptides of the Poaceae.Plant Physiol. 104, 1325–1332.PubMedGoogle Scholar
  129. 124.
    Meuwly, P., Thibault, P., Schwan, A. L., and Rauser, W. E. (1995) Three families of thiol peptides are induced by cadmium in maize.Plant J. 7, 391–400.PubMedGoogle Scholar
  130. 125.
    Rauser, W. E. and Meuwly, P. (1995) Retention of cadmium in roots of maize seedlings.Plant Physiol. 109, 195–202.PubMedGoogle Scholar
  131. 126.
    Klapheck, S., Chrost, B., Starke, J., and Zimmermann, H. (1992) γ-glutamylcysteinylserine: a new homologue of glutathione in plants of the family Poaceae.Botanica Acta 105, 174–179.Google Scholar
  132. 127.
    Meuwly, P., Thibault, P., and Rauser, W. E. (1993) γ-Glutamylcysteinylglutamic acid: a new homologue of glutathione in maize seedlings exposed to cadmium.FEBS Lett.336, 472–476.PubMedGoogle Scholar
  133. 128.
    Zenk, M. H. (1996) Heavy metal detoxification in higher plants: a review.Gene 179, 21–30.PubMedGoogle Scholar
  134. 129.
    Maitani, T., Kubota, H., Sato, K., Yamada, T. (1996) The composition of metals bound to class III metallothionein (phytochelatin and its desglycyl peptide) induced by various metals in root cultures ofRubia tinctorum.Plant Physiol.110, 1145–1150.PubMedGoogle Scholar
  135. 130.
    Grill, E., Löffler, S., Winnacker, E.-L., and Zenk, M. H. (1989) Phytochelatins, the heavymetal-binding peptides of plants, are synthesized from glutathione by a specific γ-glytamylcysteine dipeptidyl transpeptidase (phytochelatin synthase).Proc. Natl. Acad. Sci. U.S.A. 86, 6838–6842.PubMedGoogle Scholar
  136. 131.
    Loeffler, S., Hochberger, A., Grill, E., Winnacker, E.-L., and Zenk, M. H. (1989) Termination of the phytochelatin synthase reaction through sequestration of heavy metals by the reaction product.FEBS Lett. 258, 42–46.Google Scholar
  137. 132.
    Yoshimura, E., Kabuyama, Y., Yamazaki, S., and Toda, S. (1990) Activity of poly(γ-glutamylcysteinyl)-glycine synthesis in crude extract of fission yeast,Schizosaccharomyces pombe.Agric. Biol. Chem. 54, 3025–3026.PubMedGoogle Scholar
  138. 133.
    Hayashi, Y., Nakagawa, C. W., Mutoh, N., Isobe, M., and Goto, T. (1991) Two pathways in the biosynthesis of cadystin (γEC)nG in the cell-free system of the fission yeast.Biochem. Cell Biol. 69 115–121.PubMedGoogle Scholar
  139. 134.
    Klapheck, S., Schlunz, S., and Bergmann, L. (1995) Synthesis of phytochelatins and homophytochelatins inPisum sativum L.Plant Physiol. 107, 515–521.PubMedGoogle Scholar
  140. 135.
    de Knecht, J. A., van Baren, N., Ten Bookum, W. M., Wong Fong Sang, H. W., Koevoets, P. L. M., Schat, H., and Verkleij, J. A. C. (1995) Synthesis and degradation of phytochelatins in cadmium-sensitive and cadmium-tolerantSilene vulgaris.Plant Sci. 106, 9–18.Google Scholar
  141. 136.
    Chen, J., Zhou, J., and Goldsbrough, P. B. (1997) Characterization of phytochelatin synthase from tomato.Physiol. Plant. 101, 165–172.Google Scholar
  142. 137.
    Meuwly, P. and Rauser, W. E. (1992), Alteration of thiol pools in roots and shoots of maize seedlings exposed to cadmium.Plant Physiol. 99, 8–15.PubMedGoogle Scholar
  143. 138.
    Ju, G. C., Li, X.-Z., Rauser, W. E., and Oaks, A.. (1997) Influence of cadmium on the production of γ-glutamylcysteine peptides and enzymes of nitrogen assimilation inZea mays seedlings.Physiol. Plant. 101, 777–786.Google Scholar
  144. 139.
    Costa, G. and Spitz, E. (1997) Influence of cadmium on soluble carbohydrates, free amino acids, protein content of in vitro culturedLupinus albus.Plant Sci. 128, 131–140.Google Scholar
  145. 140.
    Noctor, G., Arisi, A.-C. M., Jouanin, L., Valadier, M.-H., Roux, Y., and Foyer, C. H. (1997) The role of glycine in determining the rate of glutathione synthesis in poplar. Possible implications for glutathione production during stress.Physiol. Plant. 100, 255–263.Google Scholar
  146. 141.
    Mutoh, N. and Hayashi, Y. (1988), Isolation of mutants ofSchizosaccharomyces pombe unable to synthesize cadystin, small cadmium-binding peptides.Biochem. Biophys. Res. Commun. 151, 32–39.PubMedGoogle Scholar
  147. 142.
    Howden, R., Goldsbrough, P. B., Andersen, C. R., and Cobbett, C. S. (1995) Cadmiumsensitive,cad1 mutants ofArabidopsis thaliana are phytochelatin deficient.Plant Physiol.107, 1059–1066.PubMedGoogle Scholar
  148. 143.
    Chen, J. and Goldsbrough, P. B. (1994) Increased activity of γ-glutamylcysteine synthetase in tomato cells selected for, cadmium tolerance.Plant Physiol.106, 233–239.PubMedGoogle Scholar
  149. 144.
    Schäffer, H. J., Greiner, S., Rausch, T., and Haag-Kerwer, A. (1997) In seedlings of the heavy metal accumulatorBrassica juncea Cu2+ differentially affects transcript amounts for γ-glutamylcysteine synthetase (ECS) and metallothionein (MT2).FEBS Lett. 404, 216–220.Google Scholar
  150. 145.
    Murasugi, A., Wada, C., and Hayashi, Y. (1981) Cadmium-binding peptide induced in fission yeast,Schizosaccharomyces pombe.J. Biochem. 90, 1561–1564.PubMedGoogle Scholar
  151. 146.
    Kneer, R. and Zenk, M. H. (1997) The formation of Cd-phytochelatin complexes in plant cell cultures.Phytochem. 44, 69–74.Google Scholar
  152. 147.
    Strasdeit, H., Duhme, A.-K., Kneer, R., Zenk, M. H., Hermes, C., and Nolting, H.-F. (1991) Evidence for discrete Cd(SCys)4 units in cadmium phytochelatin complexes from EXAFS spectroscopy.J. Chem Soc., Chem. Commun. 16, 1129–1130.Google Scholar
  153. 148.
    Reese, R. N., White, C. A., and Winge, D. R. (1992) Cadmium-sulfide crystallites in Cd-(γEC)nG peptide complexes from tomato.Plant Physiol. 98, 225–229.PubMedGoogle Scholar
  154. 149.
    Salt, D. E., Pickering, I. J., Prince, R. C., Gleba, D., Dushenkov, S., Smith, R. D., and Raskin, I. (1997) Metal accumulation by aquacultured seedlings of Indian mustard.Environ. Sci. Technol. 31, 1636–1644.Google Scholar
  155. 150.
    Murasugi, A., Wada, C., and Hayashi, Y. (1983) Occurrence of acid-labile sulfide in cadmium-binding peptide 1 from fission yeast.J. Biochem. 93, 661–664.PubMedGoogle Scholar
  156. 151.
    Speiser, D. M., Abrahamson, S. L., Banuoelos, G., and Ow, D. W. (1992)Brassica juncea, produces a phytochelatin-cadmium-sulfide complex.Plant Physiol 99, 817–821.PubMedGoogle Scholar
  157. 152.
    Rauser, W. E. (1997) Two cadmium-binding complexes occur in roots of maize, properties and function.Plant Physiol.114(Suppl), 126.Google Scholar
  158. 153.
    Dameron, C. T., Reese, N. R., Mehra, R. K., Kortan, A. R., Carroll, P. J., Steigerwald, M. L., Brus, L. E., and Winge, D. R. (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites.Nature 338, 596–597.Google Scholar
  159. 154.
    Reese, N. R. and Winge, D. R. (1988) Sulfide stabilization of the cadmium-γ-glutamyl peptide complex ofSchizosaccharomyces pombe.J. Biol. Chem. 263, 12832–12835.PubMedGoogle Scholar
  160. 155.
    Jackson, P. J., Delhaize, E., and Kuske, C. R. (1992) Biosynthesis and metabolic roles of cadystins (γ-EC)nG and their precursors inDatura innoxia.Plant Soil 146, 281–289.Google Scholar
  161. 156.
    Mehra, R. K. and Mulchandani, P. (1995) Glutathione-mediated transfer of Cu(I) into phytochelatins.Biochem. J. 307, 697–705.PubMedGoogle Scholar
  162. 157.
    Mehra, R. K., Kodati, R., and Abdullah, R. (1995) Chain length-dependent Pb(II)-coordination in phytochelatins.Biochem. Biophys. Res. Commun. 215, 730–736.PubMedGoogle Scholar
  163. 158.
    Mehra, R. K., Tran, K., Scott, G. W. Mulchandani, P., and Saini, S. S. (1996) Ag(I)-binding to phytochelatins.J. Inorg. Biochem. 61, 125–142.PubMedGoogle Scholar
  164. 159.
    Mehra, R. K., Miclat, J., Kodati, R., Abdullah, R., Hunter, T. C., and Mulchandani, P. (1996) Optical spectroscopic and reversephase HPLC analyses of Hg(II) binding to phytochelatins.Biochem. J. 314, 73–82.PubMedGoogle Scholar
  165. 159a.
    Bae, W. and Mehra, R. K. (1997) Metalbinding characteristics of a phytochelatin analog (Glu-Cys)2-Gly.J. Inorg. Biochem. 68, 201–210.Google Scholar
  166. 160.
    Ortiz, D. F., Kreppel, L., Speiser, D. M., Scheel, G., Macdonald, G., and Ow, D. W. (1992) Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter.EMBO J. 11, 3491–3499.PubMedGoogle Scholar
  167. 161.
    Ortiz, D. F., Ruscitti, T., McCue, K. F., and Ow, D. W. (1995) Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein.J. Biol. Chem. 270, 4721–4728.PubMedGoogle Scholar
  168. 162.
    Salt, D. E. and Wagner, G. J. (1993) Cadmium transport across tonoplast of vesicles from oat roots. Evidence for a Cd2+/H+ antiport activity.J. Biol. Chem. 268, 12,297–12,302.Google Scholar
  169. 163.
    Salt, D. E. and Rauser, W. E. (1995) MgATP-dependent transport of phytochelatins across the tonoplast of oat roots.Plant Physiol. 107, 1293–1301.PubMedGoogle Scholar
  170. 164.
    Grill, E., Thumann, J., Winnacker, E.-L., and Zenk, M. H. (1988) Induction of heavy-metal binding phytochelatins by inoculation of cell cultures in standard media.Plant Cell Rep.7, 375–378.Google Scholar
  171. 165.
    Thumann, J., Grill, E., Winnacker, E.-L., and Zenk, M. H. (1991) Reactivation of metalrequiring apoenzymes by phytochelatin-metal complexes.FEBS Lett.284, 66–69.PubMedGoogle Scholar
  172. 166.
    Kneer, R. and Zenk, M. H. (1992) Phytochelatins protect plant enzymes from heavy metal poisoning.Phytochemistry 31, 2663–2667.Google Scholar
  173. 167.
    Verkleij, J. A. C., Koevoets, P., van't Riet, J., Bank, R., Nijdam, Y., and Ernst, W. H. O. (1990) Poly(γ-glutamylcysteinyl) glycines or phytochelatins and their role in cadmium tolerance ofSilene, vulgaris.Plant Cell Environ.13, 913–921.Google Scholar
  174. 168.
    Schat, H. and Kalff, M. M. A. (1992) Are phytochelatins involved in differential metal tolerance or do they merely reflect metal-imposed strain?Plant Physiol.99, 1475–1480.PubMedGoogle Scholar
  175. 169.
    de Knecht, J. A., van Dillen, M., Koevoets, P. L. M., Schat, H., Verkleij, J. A. C., and Ernst, W. H. O. (1994) Phytochelatins in cadmiumsensitive and cadmium-tolerantsilene vulgaris.Plant Physiol. 104, 255–261.PubMedGoogle Scholar
  176. 170.
    Harmens, H., den Hartog, P. R., Ten Bookum, W. M., and Verkleij, J. A. C. (1993) Increased zinc tolerance inSilene vulgaris (Moench) Garcke is not due to increased production of phytochelatins.Plant Physiol.103, 1305–1309.PubMedGoogle Scholar
  177. 171.
    de Vos, C. H. R., Vonk, M. J., Vooijs, R., and Schat, H. (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress inSilene cucubalus.Plant Physiol. 98, 853–858.PubMedGoogle Scholar
  178. 172.
    Yeargan, R., Maiti, I. B., Nielsen, M. T., Hunt, A. G., and Wagner, G. J. (1992) Tissue partitioning of cadmium in transgenic tobacco seedlings and field grown plants expressing the mouse metallothionein I gene.Transgenic Res. 1, 261–267.PubMedGoogle Scholar
  179. 173.
    Pan, A., Yang, M., Tie, F., Li, L., Chen, Z., and Ru, B. (1994) Expression of mouse metallothionein-I gene confers cadmium resistance in transgenic tobacco plants.Plant Mol. Biol. 24, 341–351.PubMedGoogle Scholar
  180. 174.
    Hasegawa, I., Terada, E., Sunairi, M., Wakita, H., Shinmachi, F., Noguchi, A., Nakajima, M., and Yazaki, J. (1997) Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP1).Plant Soil 196, 277–281.Google Scholar

Copyright information

© Humana Press, Inc 1999

Authors and Affiliations

  1. 1.Department of BotanyUniversity of GuelphGuelphCanada

Personalised recommendations