Cell Biochemistry and Biophysics

, Volume 30, Issue 1, pp 71–88

Cathepsins as effector proteases in hepatocyte apoptosis

  • Lewis R. Roberts
  • Philip N. Adjei
  • Gregory J. Gores


Cathepsins B and D appear to act as part of the effector protease cascade in hepatocyte apoptosis, both in bile salt-induced apoptosis and CPT-induced apoptosis of hepatocellular cancer cell lines. It is important to note that these proteases do not appear to participate in many models of apoptosis studied to date; in fact, cathepsin inhibitors have been used as negative controls to show that enzymes other than caspases are not involved in apoptosis. In particular, it has been shown that cathepsin B inhibitors do not prevent many models of apoptosis in lymphocytes (43). Further, our experiments have shown that not all models of hepatocyte apoptosis are mediated by cathepsins. For example, staurosporine-induced apoptosis is not inhibited by cathepsin B inhibitors in primary hepatocytes or in cell lines stably transfected with the cathepsin B antisense construct. Although the signaling pathways leading to activation of cathepsins B and D in hepatocyte apoptosis are not completely understood, we hypothesize that a caspase 8-like protein may be involved proximal to cathepsins D and B (Fig. 6). The precise mechanism by which cathepsin B is translocated from lysosomes to “apoptotic targets” is currently under investigation in our laboratory. Because of the relative promiscuity of cathepsin B as protease, it is likely that it is involved in nonspecific protein degradation in apoptotic bodies; however, cathepsin B has also been shown to degrade certain specific proteins, such as histones, which may be directly relevant to the apoptotic process. Further evaluation of the role of cathepsins B and D in apoptosis should include the determination of specific proteolytic targets that result in the biochemical and morphologic manifestations of apoptosis.

Index Entries

Bile salts Cathepsin B Cathepsin D Hepatocellular carcinoma Topoisomerase inhibitors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kerr, J. F. R. (1971) Shrinkage necrosis: a distinct mode of cellular death.J. Pathol. 105, 13–20.PubMedCrossRefGoogle Scholar
  2. 2.
    Kerr, J. F. R., Wyllie, A. H., and Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics.Br. J. Cancer 26, 239–257.PubMedGoogle Scholar
  3. 3.
    Wyllie, A. H., Kerr, J. F. R., and Currie, A. R. (1980) Cell death: the significance of apoptosis,Int. Rev. Cytol. 68, 251–306.PubMedGoogle Scholar
  4. 4.
    Fraser, A. and Evan, G. (1996) A license to killCell 85, 781–784.PubMedCrossRefGoogle Scholar
  5. 5.
    Muzio, M., Chinnaiyan, A. M., Kischkel, F. C., O'Rourke, K., Shevchenko, A., Ni, J., Scaffaldi, C., Bretz, J. D., Zhang, M., Gentz, R., Mann, M., Krammer, P. H., Peter, M. E., and Dixit, V. M. (1996) FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex.Cell 85, 817–827.PubMedCrossRefGoogle Scholar
  6. 6.
    Boldin, M. P., Goncharov, T. M., Goltsev, Y. V., and Wallach, D. (1996) Involvement of MACH, a novel MORT1/FADD-interacting protease, in a Fas/APO-1-and TNF receptor-induced cell death.Cell 85, 803–815.PubMedCrossRefGoogle Scholar
  7. 7.
    Leist, M., Single, B., Kunstle, G., Volbracht, C., Hentze, H., and Nicotera, P. (1997) Apoptosis in the absence of poly-(ADP-ribose) polymerase.Biochem. Biophys. Res. Commun. 233, 518–522.PubMedCrossRefGoogle Scholar
  8. 8.
    Patel, T., Gores, G. J., and Kaufmann, S. H. (1996) The role of proteases during apoptosis.FASEB J. 10, 587–597.PubMedGoogle Scholar
  9. 9.
    Deiss, L. P., Galinka, H., Berissi, H., Cohen, O., and Kimchi, A. (1996) Cathepsin D protease mediates programmed cell death induced by interferon-g, Fas/APO-1 and TNF-a.EMBO J.15, 3861–3870.PubMedGoogle Scholar
  10. 10.
    Lotem, J. and Sachs, L. (1996) Differential suppression by protease inhibitors and cytokines of apoptosis induced by wild-type p53 and cytotoxic agents.Proc. Natl. Acad. Sci. USA 93, 12,507–12,512.Google Scholar
  11. 11.
    Tenniswood, M. P., Guenette, R. S., Lakins, J., Mooibroek, M., Wong, P., and Welsh, J.-E. (1992) Active cell death in hormone dependent tissues.Cancer Metastasis Rev. 11, 192–219.Google Scholar
  12. 12.
    Nitatori, T., Sato, N., Waguri, S., Karasawa, Y., Araki, H., Shibanai, K., Kominami, E., and Uchiyama, Y. (1995) Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis.J. Neurosci. 15, 1001–1011.PubMedGoogle Scholar
  13. 13.
    Hill, I. E., Preston, E., Monette, R., and MacManus, J. P. (1997) A comparison of cathepsin B processing and distribution during neuronal death in rats following global ischemia or decapitation necrosis.Brain Res. 751, 206–216.PubMedCrossRefGoogle Scholar
  14. 14.
    Taniguchi, K., Sato, N. and Uchiyama, Y. (1995) Apoptosis and heterophagy of medial edge epithelial cells of the secondary palatine shelves during fusion.Arch. Histol. Cytol. 58, 191–203.PubMedGoogle Scholar
  15. 15.
    Greim, H., Trulzsch, D., Roboz, J., Dressler, K., Czygan, P., Hutterer, F., Schaffner, F., and Popper, H. (1972) Mechanism of cholestasis. 5. Bile acids in normal rat livers and in those after bile duct ligation.Gastroenterology 63, 837–845.PubMedGoogle Scholar
  16. 16.
    Greim, H., Trulzsch, D., Czygan, P., Rudick, J., Hutterer, F., Schaffner, F., and Popper, H. (1972) Mechanism of cholestasis. 6. Bile acids in human livers with or without biliary obstruction.Gastroenterology 63, 846–850.PubMedGoogle Scholar
  17. 17.
    Schumucker, D. L., Ohta, M., Kanai, S., Sato, Y. and Kitani, K. (1990). Hepatic injury induced by bile salts: correlation between biochemical and morphological events.Hepatology 12, 1216–1221.CrossRefGoogle Scholar
  18. 18.
    Poupon, R., Balkan, B., Eschwege, E., and Poupon, P. (1991) A multicenter controlled trial of ursodiol for the treatment of primary biliary cirrhosis.N. Engl. J. Med. 324, 1548–1554.PubMedCrossRefGoogle Scholar
  19. 19.
    Patel, T., Bronk, S. F., and Gores, G. J. (1994) Increases of intracellular magnesium promote glycodeoxycholate-induced apoptosis in hepatocytes.J. Clin. Invest. 94, 2183–2192.PubMedGoogle Scholar
  20. 20.
    Kurosawa, H., Que, F. G., Roberts, L. R., Fesmier, P. J., and Gores, G. J. (1997) Hepatocytes in the bile duct ligated rat express Bcl-2: a potential mechanism to inhibit apoptosis by toxic bile salts.Am. J. Physiol. 272, G1587-G1593.PubMedGoogle Scholar
  21. 21.
    Kwo, P., Patel, T., Bronk, S. F., and Gores, G. J. (1995) Nuclear serine protease activity contributes to bile acid-induced apoptosis in hepatocytes.Am. J. Physiol. 268, G613-G621.PubMedGoogle Scholar
  22. 22.
    Roberts, L. R., Kurosawa, H., Bronk, S. F., Fesmier, P. J., Agellon, L. B., Leung, W.-Y., Mao, F., and Gores, G. J. (1997) Cathepsin B contributes to bile salt-induced apoptosis of rat hepatocytes.Gastroenterology 113, 1714–1726.PubMedCrossRefGoogle Scholar
  23. 23.
    Kirschke, H., Barrett, A. J., and Rawlings, N. D. (1995) Proteinases 1: Lysosomal cysteine proteinases.Prot. Profile 2, 1587–1591.Google Scholar
  24. 24.
    McKay, M. J., Offermann, M. K., Barrett, A. J., and Bond, J. S. (1983). Action of human liver cathepsin B on the oxidized insulin B chain.Biochem. J. 213, 467–471.PubMedGoogle Scholar
  25. 25.
    Mort, J. S. and Recklies, A. D. (1986) Interrelationship of active and latnet secreted human cathepsin B precursors.Biochem. J. 233, 57–63.PubMedGoogle Scholar
  26. 26.
    Authier, F., Mort, J. S., Bell, A. W., Posner, B. I., and Bergeron, J. J. (1995) Proteolysis of glucagon within hepatic endosomes by membrane-associated cathepsins B and D.J. Biol. Chem. 270, 15,798–15,807.Google Scholar
  27. 27.
    Spiess, E., Bruning, A., Gack, S., Ulbricht, B., Spring, H., Trefz, G., and Ebert, W. (1994) Cathepsin B activity in human lung tumor cell lines: ultrastructural localization, pH sensitivity, and inhibitor status at the cellular level.J. Histochem. Cytochem. 42, 917–929.PubMedGoogle Scholar
  28. 28.
    Mizuochi, T., Yee, S-T., Kasai, M., Kakiuchi, T., Muno, D., and Kominami, E. (1994) Both cathepsin B and cathepsin D are necessary for processing of ovalbumin as well as for degradation of class II MHC invariant chain.Immunol. Lett. 43, 189–193.PubMedCrossRefGoogle Scholar
  29. 29.
    Towatari, T., Nikawa, T., Murata, M., Yokoo, C., Tamai, M., Hanada, K., and Katunuma, N. (1991) Novel epoxysuccinyl peptides. A selective inhibitor of cathepsin B,in vivo.FEBS Lett. 280, 311–315.PubMedCrossRefGoogle Scholar
  30. 30.
    Torchia, E. C., Shapiro, R. J., and Agellon, L. B. (1996) Reconstitution of bile acid transport in the rat hepatoma McArdle RH-7777 cell line.Hepatology 24, 206–211.PubMedCrossRefGoogle Scholar
  31. 31.
    Mach, L., Mort, J. S., and Glossl, J. (1994) Maturation of human procathepsin B.J. Biol. Chem. 269, 13,030–13,035.Google Scholar
  32. 32.
    Mach, L., Schwihla, H., Stuwe, K., Rowan, A. D., Mort, J. S., and Glossl, J. (1993) Activation of procathepsin B in human hepatoma cells: the conversion into the mature enzyme relies on the action of cathepsin B itself.Biochem. J. 293, 437–442.PubMedGoogle Scholar
  33. 33.
    Nishimura, Y., Kawabata, T., and Kato, K. (1988) Identification of latent procathepsins B and L in microsomal lumen: characterization of enzymatic activation and proteolytic processingin vitro.Arch. Biochem. Biophys. 261, 64–71.PubMedCrossRefGoogle Scholar
  34. 34.
    Rowan, A. D., Mason, P., Mach, L., and Mort, J. S. (1992) Rat procathepsin B: proteolytic procession to the mature formin vitro.J. Biol. Chem. 267, 15,993º15,999.Google Scholar
  35. 35.
    Shields, P. P., Gonzales, T. A., Charles, D., Gilligan, J. P., and Stern, W. (1991) Accumulation of pepstatin in cultured endothelial cells and its effect on endothelial processing.Biochem. Biophy. Res. Commun. 177, 1006–1012.CrossRefGoogle Scholar
  36. 36.
    Roberts, L. R., Bronk, S. F., and Gores, G. J. (1997) Effector proteases in bile salt-induced hepatocyte apoptosis, inBile Acids in Hepatobiliary Diseases—Basic Research and Clinical Application, Falk Symposium Series93, 265–271.Google Scholar
  37. 37.
    Jones, B. A., Rao, Y.-P., Stravitz, R. T., and Gores, G. J. (1997) Bile salt-induced apoptosis of hepatocytes involves activation of protein kinase C.Am. J. Physiol. 272, G1109-G1115.PubMedGoogle Scholar
  38. 38.
    Grasl-Kraupp, B., Ruttkay-Nedecky, B., Mullauer, L., Taper, H., Huber, W., Bursch, W., and Schulte-Hermann, R. (1997) Inherent increase of apoptosis in liver tumors: implications for carcinogenesis and tumor regression.Hepatology 25, 906–912.PubMedCrossRefGoogle Scholar
  39. 39.
    Liu, L. F. (1989) DNA topoisomerase poisons as antitumor drugs.Annu. Rev. Biochem. 58, 351–376.PubMedCrossRefGoogle Scholar
  40. 40.
    Adjei, P. N., Kaufmann, S. H., Leung, W. Y., Mao, F., and Gores, G. J. (1996) Selective induction of apoptosis in Hep 3B cells by topoisomerase I inhibitors: evidence for a protease-dependent pathway that does not activate cysteine protease P32.J. Clin. Invest. 98, 2588–2596.PubMedCrossRefGoogle Scholar
  41. 41.
    Faubion, W. A., Roberts, P. J., Bronk, S. F., Agellon, L. B., and Gores, G. J. A unique caspase 8-cathepsin B protease cascade contributes to bile salt-induced apoptosis.Gastroenterology (abstract), in press.Google Scholar
  42. 42.
    Zhou, Q., Snipas, S., Orth, K., Mazio, M., Dixit, V. M., and Salvesen, G. S. (1997) Target protease specificity of the viral serpin crm A.J. Biol. Chem. 272, 7797–7800.PubMedCrossRefGoogle Scholar
  43. 43.
    Sarin, A., Wu, M. L., and Henkart, P. A. (1996) Different interleukin-1 beta converting enzyme (ICE) family protease requirements for the apoptotic death of T lymphocytes triggered by diverse stimuli.J. Exp. Med. 184, 2445–2450.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1999

Authors and Affiliations

  • Lewis R. Roberts
    • 1
  • Philip N. Adjei
    • 1
  • Gregory J. Gores
    • 1
  1. 1.Division of Gastroenterology, Mayo Clinic and Mayo FoundationCenter for Basic Research in Digestive DiseasesRochester

Personalised recommendations