International Journal of Primatology

, Volume 9, Issue 4, pp 281–345 | Cite as

Anatomy of the hominoid wrist joint: Its evolutionary and functional implications

  • Esteban E. Sarmiento
Article

Abstract

Observations on the behavior of living hominoids show generic differences in the use and posture of the wrist joint. Both orang-utans and hylobatids usually use the wrist in suspensory behaviors. However, orang-utans emphasize markedly adducted and flexed wrist postures, while hylobatids emphasize violent forearm and wrist rotation. African apes, especially the gorilla, use the wrist more frequently than other hominoids for terrestrial quadrupedal weight-bearing. Humans use the wrist less frequently for supportive purposes than do other hominoids. These behavioral differences correspond to structural specializations in the proximal carpal joint of each of the hominoid genera. Although each of the hominoid genera has apparently modified its proximal carpal joint best to serve its characteristic behaviors, all hominoids share a unique proximal carpal joint that permits approximately 160ℴ of forearm rotation. The hylobatid proximal carpal joint is specialized in exhibiting a marked development of those structures limiting forearm rotation, but it is in most respects the least derived— that is, closest to the nonhominoid anthropoids. Chimpanzees show a proximal carpal joint that is more generalized than those of the other great apes but more derived than that of hylobatids. The human and gorilla proximal wrist joints, on the other hand, show marked modifications for weight-bearing in terrestrial behaviors. Orang-utans have the most derived proximal carpal joint, which in many respects parallels that of the slow-climbing nonhominoid primates. The comparative anatomy and structural specializations of the wrist joint support (a) an early divergence of hylobatids from the common hominoid stock, (b) a common ancestry for gorillas and humans separate from the other hominoids, and (c) a long independent evolutionary period for orang-utans since their divergence from the common hominoid stock, or one that was marked by strong selection pressures for wrist specializations. Unfortunately, the generalized condition of the chimpanzee’s wrist joint and the very derived condition of the orang-utan wrist provide uncertain evidence as to which of the two was first to diverge from the common hominoid stock. Identification of hominoid wrist specializations as reflecting real phylogenetic relationships or parallelisms depends on how well the phytogeny inferred from wrist morphology accords with those arrived at from the study of other systems.

Key words

os daubentonii ulnocarpal joint forearm rotation triangular articular disc hominoids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldwin, L. A., and Teleki, G. (1976). Patterns of gibbon behavior on Hall’s Island, Bermuda. In Rumbaugh, D. M. (ed.),Gibbon and Siamang, S. Karger, Basel, Vol. 4, pp. 21–105.Google Scholar
  2. Barnett, C. H. (1954). The structure and function of fibrocartilages within vertebrate joints.J. Anal. (London) 88: 363–368.Google Scholar
  3. Beard, K. C., Teaford, M. T., and Walker, A. (1986). New wrist bones ofProconsul africanus andP. nyanzae from Rusinga Island, Kenya.Folia Primatol. 47: 97–118.PubMedGoogle Scholar
  4. Becarri, O. (1904).Wanderings in the Great Forests of Borneo, Constable, London.Google Scholar
  5. Bradley, K. C., and Sunderland, S. (1953). The range of movement at the wrist joint.Anat. Rec. 116: 139–145.PubMedCrossRefGoogle Scholar
  6. Carpenter, C. R. (1940). A field study in Siam of the behavior and social relations of the gibbon(Hylobates lar).Comp. Psych. Monogr. 16(5): 1–212.Google Scholar
  7. Cartmill, M. (1979). The volar skin of primates: Its frictional characteristics and their functional significance.Am. J. phys. Anthropol. 50: 497–510.PubMedCrossRefGoogle Scholar
  8. Cartmill, M., and Milton, K. (1977). The lorisiform wrist joint and brachiating adaptations in the Hominoidea.Am. J. phys. Anthropol. 47: 249–272.PubMedCrossRefGoogle Scholar
  9. Conroy, G. C., and Fleagle, J. C. (1972). Locomotor behavior in living and fossil pongids.Nature (London) 237: 103–104.CrossRefGoogle Scholar
  10. Corner, E. M. (1898). The morphology of the triangual cartilage of the wrist.J. Anat. (London) 32: 272–277.Google Scholar
  11. Corrucinni, R. S. (1978). Comparative osteometrics of the hominoid wrist joint, with special reference to knuckle-walking.J. hum. Evol. 7: 307–321.CrossRefGoogle Scholar
  12. Currey, J. D. (1968). The adaptation of bones to stress.J. theoret. Biol. 20: 91–106.CrossRefGoogle Scholar
  13. Darcus, H. D., and Salter, N. (1953). The amplitude of pronation and supination with the elbow flexed to a right angle.J. Anat.(London) 87: 169–184.Google Scholar
  14. Daubenton, L. (1766).Histoire Naturelle Generale et Particuliere avec la Description du Cabinet du Roi, Tome XIV, Imprimerie Royale, Paris.Google Scholar
  15. Dykjyk, D. (1980). Locomotion of the slow loris in a designed substrate context.Am. J. phys. Anthropol. 52: 577–586.CrossRefGoogle Scholar
  16. Fick, R. (1911).Handbuch der Anatomie und Mechanik der Gelenke. Dritter Teil: Spezielle Gelenk und Muskel-Mechanik, Gustav Fischer, Jena.Google Scholar
  17. Fleagle, J. G. (1976). Locomotion and posture of the Malayan siamang and implications for hominid evolution.Folia primatol. 26: 245–269.PubMedGoogle Scholar
  18. Forster, A. (1933). Contribution a 1’evolution du pouce. III.Perodicticus potto.Arch. Anat. Hist. Embryol. 16: 341–355.Google Scholar
  19. Grand, T. I. (1972). A mechanical interpretation of terminal branch feeding.J. Mammal. 53: 198–201.CrossRefGoogle Scholar
  20. Jenkins, F. A. (1972). Chimpanzee bipedalism: Cineradiographic analysis and implications for the evolution of gait.Science 178: 877–879.PubMedCrossRefGoogle Scholar
  21. Jenkins, F. A. (1981). Wrist rotation in primates: A critical adaptation for brachiators.Symp. zool. Soc. London 48: 429–451.Google Scholar
  22. Jenkins, F. A., and Fleagle, J. G. (1975). Knuckle-walking and the functional anatomy of the wrist in living apes. In Tuttle, R. H. (ed.),Primate Functional Morphology and Evolution, Mouton, The Hague, pp. 213–227.Google Scholar
  23. Kohlbrugge, J. H. F. (1890). Versuch einer Anatomie des GenusHylobates. In Weber, M. (ed.),Zoologische Ergebnisse einer Reise in Nederlandisch Ost-Indien, Brill, Leiden, Vol. 1, pp. 211–354.Google Scholar
  24. Kropp, B. N. (1945). A note on the pisotriquetral joint.Anat. Rec. 92: 91–92.CrossRefGoogle Scholar
  25. Leboucq, H. (1884). Recherches sur la morphologie du carpe chez les mammiferes.Arch. Biol. (Paris) 5: 35–102.Google Scholar
  26. Lewis, O. J. (1965). Evolutionary change in the primate wrist and inferior radio-ulnar joints.Anat. Rec. 151: 275–285.PubMedCrossRefGoogle Scholar
  27. Lewis, O. J. (1969). The hominoid wrist joint.Am. J. phys. Anthropol. 30: 251–267.PubMedCrossRefGoogle Scholar
  28. Lewis, O. J. (1971). The contrasting morphology found in the wrist joints of semi-brachiating monkeys and brachiating apes.Folia primatol. 16: 248–256.PubMedCrossRefGoogle Scholar
  29. Lewis, O. J. (1972). Osteological features characterizing the wrist of monkeys and apes, with a reconsideration of this region inDryopithecus (Proconsul) africanus.Am. J. phys. Anthropol. 36: 45–58.PubMedCrossRefGoogle Scholar
  30. Lewis, O. J. (1973). The hominoid os capitatum, with special reference to the fossil bones from Sterkfontein and Olduvai Gorge.J. hum. Evol. 2: 1–11.CrossRefGoogle Scholar
  31. Lewis, O. J. (1974). The wrist articulations of the Anthropoidea. In Jenkins, F. A. (ed.),Primate Locomotion, Academic Press, New York, pp. 143–169.Google Scholar
  32. Lewis, O. J. (1977). Joint remodelling and the evolution of the human hand.J. Anat. (London) 123: 157–201.Google Scholar
  33. Lewis, O. J. (1985). Derived morphology of the wrist articulations and theories of hominoid evolution. I. The lorisine joints.J. Anat. (London) 140: 447–460.Google Scholar
  34. Lewis, O. J., Hamshere, R. J., and Bucknill, T. M. (1970). The anatomy of the wrist joint.J. Anat. (London) 106: 539–552.Google Scholar
  35. Mackinnon, J. (1974). The behavior and ecology of wild orang-utans(Pongo pygmaeus).Anim. Behav. 22: 3–74.CrossRefGoogle Scholar
  36. Mendel, F. C. (1979). The wrist joint of two-toed sloths and its relevance to brachiating adaptations in the Hominoidea.J. Morphol. 162: 413–424.CrossRefGoogle Scholar
  37. Mendel, F. C. (1981a). Use of the hand and feet of two-toed sloths(Choloepus hoffmanni) during climbing and terrestrial locomotion.J. Mammal. 62: 413–421.CrossRefGoogle Scholar
  38. Mendel, F. C. (1981b). Hand of two-toed sloth: Its anatomy and potential use relative to size of support.J. Morphol. 169: 1–19.CrossRefGoogle Scholar
  39. Mendel, F. C. (1985). Use of the hand and feet of three-toed sloths during climbing and terrestrial locomotion.J. Mammal. 66: 359–366.CrossRefGoogle Scholar
  40. Mivart, St. G. J. (1867). On the appendicular skeleton of the primates.Phil. Trans. R. Soc. (London) 157: 299–429.CrossRefGoogle Scholar
  41. Moricke, K. D. (1964). Zur Herkunft und Funktion des ulnaren Diskus am Handgelenk.Geg. morph. Jb. 105: 365–374.Google Scholar
  42. Muybridge, E. (1955).The Human Figure in Motion, Dover, New York.Google Scholar
  43. O’Connor, B. L., and Rarey, K. E. (1979). Normal amplitudes of pronation and supination in several genera of anthropoid primates.Am. J. phys. Anthropol. 51: 39–44.CrossRefGoogle Scholar
  44. Parsons, F. G. (1899). The joints of mammals compared with those of man.J. Anat. Physiol. (London) 34: 41–68.Google Scholar
  45. Preuschoft, H. (1973). Functional anatomy of the upper extremity. In Bourne, G. H. (ed.),The Chimpanzee, Karger, Basel, Vol. 6, pp. 34–120.Google Scholar
  46. Prost, J. H. (1965). A definitional system for the classification of primate locomotion.Am. Anthropol. 67: 1198–1214.CrossRefGoogle Scholar
  47. Rijksen, H. D. (1978). A field study on Sumatran orangutans(Pongopygmaeus abelli Lesson, 1827): Ecology, behavior, and conservation.Mededelingen Landbouwhogeschool Wagenigen (Netherlands) 78(2): 1–420.Google Scholar
  48. Rodman, P. S. (1973). Population composition and adaptive organization among orang-utans of the Kutai Reserve. In Michael, R. P., and Crook, J. H. (eds.),Comparative Behavior and Ecology of Primates, Academic Press, New York, pp. 171–209.Google Scholar
  49. Rodman, P. S. (1979). Feeding behaviour of orang-utans of the Kutai Nature Reserve. In Hamburg, D. (eds.),Perspectives of Human Evolution, Addison-Wesley, New York, Vol. 4, pp. 383–413.Google Scholar
  50. Rose, M. D. (1974). Postural adaptations in New and Old World monkeys. In Jenkins, F. A. (ed.),Primate Locomotion, Academic Press, New York, pp. 201–222.Google Scholar
  51. Rose, M. D. (1979). Positional behavior of natural populations: Some quantitative results of a field study ofColobus guereza andCercopithecus aethiops. In Morbeck, M. E. Preuschoft, H., and Gomberg, N. (eds.),Environment, Behavior and Morphology: Dynamic Interactions in Primates, Fisher, New York, pp. 75–94.Google Scholar
  52. Sarmiento, E. E. (1985).Functional Differences in the Skeleton of Wild and Captive Orangutans and Their Adaptive Significance, Ph.D. thesis, New York University, New York.Google Scholar
  53. Sarmiento, E. E. (1987). The phylogenetic position ofOreopithecus and its significance in the origin of the Hominoidea.Am. Mus. Novitates 2881: 1–44.Google Scholar
  54. Schlegel, H., and Muller, S. (1839–1844). Bijdragen tot de Natuurlijke historie van den orangoetan. In Teminck, C. J. (ed.),Verhandelingen over der natuurlijke geschiedenis der Nederlandische overzeesche bezittingen, door de leden der Naturrkundige commissee in Indie en andere Schrijvers. Zoologie, Leyden, Art. 2, pp. 1–28.Google Scholar
  55. Schwarz, W. (1938). Das Os pisiforme.Geg. morph. Jb. 81: 187–212.Google Scholar
  56. Sullivan, W. E. (1961). Skeleton and joints. In Hartman, C., and Straus, W. L., Jr. (eds.),The Anatomy of the Rhesus Monkey, Hafner, New York, pp. 43–84.Google Scholar
  57. Tattersall, I. (1974). Facial structure and mandibular mechanics inArcheolemur. In Martin, R. D., Doyle, G. A., and Walker, A. C. (eds.),Prosimian Biology, Duckworth, London, pp. 563–577.Google Scholar
  58. Turnquist, J. E. (1983). Forelimb musculature and ligaments inAteles, the spider monkey.Am. J. phys. Anthropol. 62: 209–226.PubMedCrossRefGoogle Scholar
  59. Tuttle, R. H. (1967). Knuckle-walking and the evolution of the hominoid hand.Am. J. phys. Anthropol. 26: 171–206.CrossRefGoogle Scholar
  60. Tuttle, R. H. (1969a). Quantitative and functional studies on the hands of the Anthropoidea: The Hominoidea.J. Morphol. 128: 309–363.PubMedCrossRefGoogle Scholar
  61. Tuttle, R. H. (1969b). Terrestrial trends in the hands of the Anthropoidea.Proc. 2nd Int. Congr. Primatol. 2: 192–200.Google Scholar
  62. Tuttle, R. H. (1970). Postural, propulsive and prehensile capabilities in the cheiridia of chimpanzees and other great apes. In Bourne, G. H. (ed.),The Chimpanzee, University Park Press, Baltimore, Vol. 2, pp. 167–253.Google Scholar
  63. Tuttle, R. H. (1975). Knuckle-walking and knuckle-walkers: A commentary on some recent perspectives of hominoid evolution. In Tuttle, R. H. (ed.),Primate Functional Morphology and Evolution, Mouton, the Hague, pp. 200–212.Google Scholar
  64. Tuttle, R. H., Velte, M. J., and Basmajian, J. V. (1983). Electromyography of the brachial muscles ofPan troglodytes andPongo. Am. J. phys. Anthropol. 61: 75–83.CrossRefGoogle Scholar
  65. Van Horn, N.R. (1972). Structural adaptations to climbing in the gibbon hand.Am. Anthropol. 74: 326–333.CrossRefGoogle Scholar
  66. Von Bonin, G. (1929). A note on the kinematics of the wrist joint.J. Anat. (London) 60: 199–201.Google Scholar
  67. Wallace, A. R. (1980).The Malay Archipelago, The Land of the Orangutan and the Bird of Paradise, Dover, New York.Google Scholar
  68. Wood-Jones, F. (1942).The Principles of Anatomy as Seen in the Hand, Williams and Wilkins, Baltimore.Google Scholar
  69. Wright, R. D. (1935). A detailed study of movement at the wrist joint.J. Anat. (London) 70: 137–142.Google Scholar
  70. Yalden, D. W. (1972). The form and function of the carpal bones in some arboreally adapted primates.Acta Anat. 82: 383–406.PubMedCrossRefGoogle Scholar
  71. Youm, Y., McMurtry, M. D., Flatt, A. E., and Gillespie, M. D. (1978). Kinematics of the wrist. I. An experimental study of radio-ulnar deviation and flexion-extension.J. Bone. Jt. Surg. 60(A): 423–431.Google Scholar
  72. Ziemer, L. K. (1978). Functional morphology of the forelimb joints in the woolly monkeyLagothrix lagothricha. Contrib. primatol. 14: 1–130.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Esteban E. Sarmiento
    • 1
  1. 1.Department of MammalogyAmerican Museum of Natural HistoryNew York

Personalised recommendations