Journal of Molecular Neuroscience

, Volume 8, Issue 1, pp 63–73 | Cite as

Sequences in the proximal 5′ flanking region of the rat neuron-specific enolase (NSE) gene are sufficient for cell type-specific reporter gene expression

  • Richard M. Twyman
  • Elizabeth A. Jones
Original Articles


We investigated the regulation of the rat neuron-specific enolase gene using a transient transfection approach. Recent transgenic mouse studies have shown that a 1.8-kb segment of the ratNSE gene 5′ flanking region, including the first (noncoding) exon but not the first intron, is able to drive expression of a reporter gene in parallel with endogenousNSE. These data suggest thatcis-acting elements responsible for the spatial and temporal pattern ofNSE gene expression are located within the proximal 1.8 kb of the 5′ flanking sequence. To further investigate this region, we joined the 1.8-kb regulatory cassette to thecat reporter gene and generated a number of constructs in which the flanking sequence was progressively deleted from the 5′ end. These constructs were tested by transient transfection into neuronal and nonneuronal cells, followed by an assay for CAT activity. We found that as little as 255 bp of 5′ flanking sequence was able to confer cell type-specificity on the reporter gene. Further truncation to 120 bp of 5′ sequence resulted in a sharp downregulation of reporter activity in PC12 cells but a significant rise in both Neuro-2A neuroblastoma cells and nonneuronal Ltk- cells, indicating thatcis-acting elements controlling the regulation ofNSE in Ltk-, Neuro-2A, and PC12 cells may lie within the 135 bp region covered by this deletion. This region contains an AP-2 site and an element similar in sequence and position to a motif identified in the proximal promoter region of the neuron-specific peripherin gene. Reduction to 95 bp of 5′ sequence resulted in a slight downregulation of CAT activity in all cell lines tested, and further truncation to 65 bp of 5′ sequence caused a universal reduction to background levels of CAT activity, concomitant with the disruption of the basalNSE promoter. Our results show that the 5′ flanking region of theNSE gene is capable of conferring cell type-specificity on a heterologous gene in transfected cells and that elements responsible for this are located within the proximal 255 bp.

Index Entries

Enolase transient transfection promoter analysis chloramphenicol acetyl-transferase neuron 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Batke J., Nazaryan K. B., and Karapetian N. H. (1988) Complex of braind-phosphoglycerate mutase and γ-enolase and its reactivation byd-glycerate 2,3-bisphosphate.Arch. Biochem. Biophys. 264, 510–518.PubMedCrossRefGoogle Scholar
  2. Beaudet L., Charron G., Houle D., Tretjakoff I., Peterson A., and Julien P. (1992) Intragenic regulatory elements contribute to the transcriptional control of the neurofilament light gene.Gene (Amst.) 99, 127–204.Google Scholar
  3. Brady S. T. and Lasek R. J. (1981) Nerve-specific enolase and creatine phosphokinase in axonal transport—soluble proteins and the axoplasmic matrix.Cell 23, 515–523.PubMedCrossRefGoogle Scholar
  4. Chen C. and Okayama H. (1987) High efficiency transformation of mammalian cells by plasmid DNA.Mol. Cell. Biol. 7, 2745–2751.PubMedGoogle Scholar
  5. Chin L-S., Li L., and Greengard P. (1994) Neuron-specific expression of the synapsin II gene is directed by a specific core promoter and upstream regulatory elements.J. Biol. Chem. 266, 19,459–19,468.Google Scholar
  6. Desmaris D., Fillon M., Lapointe L., and Royal A. (1992) Cell-specific transcription of the peripherin gene in neuronal cell lines involves acis-acting element surrounding the TATA box.EMBO J. 11, 2971–2980.Google Scholar
  7. Faraonio R., Minopoli G., Porcellini A., Costanzo F., Cimino F., and Russo T. (1994) The DNA sequence encompassing the transcriptional start site of a TATA-less promoter contains enough information to drive neuron-specific transcription.Nucleic Acids Res. 22, 4876–4883.PubMedCrossRefGoogle Scholar
  8. Forss-Petter S., Danielson P. E., and Sutcliffe J. G. (1986) Neuron-specific enolase: complete structure of the rat mRNA, multiple transcriptional start sites, and evidence suggesting posttranscriptional control.J. Neurosci. Res. 16, 141–156.PubMedCrossRefGoogle Scholar
  9. Forss-Petter S., Danielson P. E., Catsicas S., Battenberg E., Price J., Nerenberg M., and Sutcliffe J. G. (1990) Transgenic mice expressing β-galactosidase in mature neurons under neuron-specific enolase promoter control.Neuron 5, 187–197.PubMedCrossRefGoogle Scholar
  10. Gorman C. M., Moffat L. F., and Howard B. H. (1982) Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells.Mol. Cell. Biol. 2, 1044–1051.PubMedGoogle Scholar
  11. Greene L. A., Aletta J. M., Rukenstein A., and Greene S. H. (1987) PC12 pheochromocytoma cells: culture, nerve growth factor treatment, and experimental exploitation.Methods Enzymol. 147, 207–216.PubMedCrossRefGoogle Scholar
  12. Hsu C., Janicki S., and Montiero M. J. (1995) The first intron of the mouse neurofilament light gene (NFL) increases gene expression.Mol. Brain Res. 32, 241–251.PubMedCrossRefGoogle Scholar
  13. Imagawa M., Chiu R., and Karin M. (1987) Transcription factor AP-2 mediates induction by two different signal transduction pathways: protein kinase C and cAMP.Cell 51, 251–260.PubMedCrossRefGoogle Scholar
  14. Lim L., Hall C., Leung T., Mahadevan L., and Whatley S. (1983) Neuron-specific enolase and creatine phosphokinase are protein components of rat brain synaptic plasma membranes.J. Neurochem. 41, 1177–1182.PubMedCrossRefGoogle Scholar
  15. Marangos P. J., Parma A. M., and Goodwin F. K. (1978) Functional properties of neuronal and glial isoenzymes of brain enolase.J. Neurochem. 31, 727–732.PubMedCrossRefGoogle Scholar
  16. Marangos P. J. and Schmechel D. E. (1987) Neuronspecific enolase, a clinically useful marker for neurons and neuroendocrine cells.Ann. Rev. Neurosci. 10, 269–295.PubMedCrossRefGoogle Scholar
  17. Matranga V., Oliva D., Sciarrino S., D’Amelio L., and Giallongo A. (1993) Differential expression of neuron-specific enolase mRNA in mouse neuroblastoma cells in response to differentiation-inducing agents.Cell. Mol. Neurobiol. 13, 137–145.PubMedCrossRefGoogle Scholar
  18. Matsuo K., Ikeshima H., Shimoda K., Umezawa A., Hata J., Maejima K., Nojima H., and Takano T. (1993) Expression of the rat calmodulin gene II in the central nervous system: a 294 base promoter and 68 base leader segment mediates neuron-specific gene expression in transgenic mice.Mol. Brain Res. 20, 9–20.PubMedCrossRefGoogle Scholar
  19. Nedivi E., Basi G. S., Akey I. V., and Skene J. H. P. (1992) A neural-specificGAP-43 core promoter located between unusual DNA elements that interact to regulate its activity.J. Neurosci. 12, 691–704.PubMedGoogle Scholar
  20. Sakimura K., Kushiya E., Takahashi Y., and Suzuki Y. (1987) The structure and expression of the neuron-specific enolase gene.Gene (Amst.) 60, 103–113.Google Scholar
  21. Sakimura K., Kushiya E., Ogura A., Kudo Y., Katagiri T., and Takahashi Y. (1995) Upstream and intron regulatory regions for expression of the rat neuron-specific enolase gene.Mol. Brain. Res. 28, 19–28.PubMedCrossRefGoogle Scholar
  22. Sambrook J., Fritsch E. F., and Maniatis T. (1989)Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  23. Sauerwald A., Hoesche C., Oschwald R., and Kilimann M. W. (1990) The 5′ region of the synapsin I gene: a G+C-rich TATA- and CAAT-less, phylogenetically conserved sequence with cell typespecific promoter activity.J. Biol. Chem. 265, 14,932–14,937.Google Scholar
  24. Takei N., Kondo J., Nagaike K., Ohsawa K., Kato K., and Kohsaka S. (1991) Neuronal survival factor from bovine brain is identical to neuron-specific enolase.J. Neurochem. 57, 1178–1184.PubMedCrossRefGoogle Scholar
  25. Tamura T. A., Sumita K., Hirose S., and Mikoshiba K. (1990) Core promoter of the mouse myelin basic protein gene governs brain-specific transcriptionin vitro.EMBO J. 9, 3101–3108.PubMedGoogle Scholar
  26. Thiel G., Greengard P., and Südhof T. C. (1991) Characterization of tissue-specific transcription by the human synapsin I gene promoter.Proc. Natl. Acad. Sci. USA 88, 3431–3435.PubMedCrossRefGoogle Scholar
  27. Twyman R. M. and Jones E. A. (1995) The regulation of neuron-specific gene expression in the mammalian nervous system.J. Neurogenet. 10, 67–101.PubMedGoogle Scholar
  28. Twyman R. M. and Jones E. A. The molecular biology of the vertebrate enolase family.Biochem. J., submitted for publication.Google Scholar
  29. Vinores S. A., Marangos P. J., Parma A. M., and Guroff G. (1981) Increased levels of neuron-specific enolase in PC12 pheochromocytoma cells as a result of nerve growth factor treatment.J. Neurochem. 37, 597–600.PubMedCrossRefGoogle Scholar
  30. Wefald F. C., Devlin B. H., and Williams R. S. (1990) Functional heterogeneity of mammalian TATA-box sequences revealed by interaction with cell-specific enhancer.Nature 344, 260–262.PubMedCrossRefGoogle Scholar
  31. Wisden W. and Grant A. L. (1996) Neuron-specific gene expression, inMolecular Biology of the Neuron (Davies R. W., and Morris B. J., eds.), ßios Scientific Publishers, Oxford, in press.Google Scholar
  32. Zimmerman L., Lendahl U., Cunningham M., McKay R., Parr B., Mann J., Vassileva G., and McMahon A. (1994) Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle precursors.Neuron 12, 11–24.PubMedCrossRefGoogle Scholar
  33. Zomzely-Neurath C. E. (1983) Enolase, inHandbook of Neurochemistry, vol. 4, 2nd ed. (Lajtha A., ed.), Plenum, New York, pp. 402–433.Google Scholar

Copyright information

© Humana Press Inc 1997

Authors and Affiliations

  • Richard M. Twyman
    • 1
  • Elizabeth A. Jones
    • 1
  1. 1.Department of Biological SciencesUniversity of WarwickCoventryUK

Personalised recommendations