Journal of Molecular Neuroscience

, Volume 9, Issue 2, pp 65–74

Gene delivery to rat enteric neurons using herpes simplex virus-based vectors

  • M. Keith Howard
  • Robert S. Coffin
  • Alistair R. Maclean
  • S. Moira Brown
  • Doreen Bailey
  • Patricia N. Anderson
  • Geoffrey Burnstock
  • David S. Latchman
Article

Abstract

Neurons of the enteric (gut) nervous system can be cultured in vitro and readily survive transplantation into the brain making close connections with host neurons. As such, they could potentially be used to deliver therapeutic gene products to the brain after transduction with appropriate genes in culture. Here the authors report the first example of gene delivery to such cultured neurons using herpes simplex virus based vectors. They show that viruses lacking the immediate early gene encoding ICP27 (which are unable to replicate lytically) can efficiently deliver a marker gene to enteric neurons without producing extensive cellular damage. In contrast, viruses lacking only the viral neurovirulence factor encoded by ICP34.5 are inefficient in gene delivery, and produce extensive cellular damage, although they cannot replicate lytically in enteric neurons. A virus lacking both ICP27 and ICP34.5, however, produces less cellular damage than one lacking only ICP27, and is as efficient in gene transfer, whereas inactivation of VMW65 reduces toxicity further. The identification of this virus as a safe and efficient gene delivery vector for enteric neurons paves the way for the eventual delivery of therapeutic genes and subsequent transplantation of engineered neurons into the CNS.

Index Entries

Enteric neurons herpes simplex virus gene delivery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ace C. I., McKee T. A., Ryan M., Cameron J. M., and Preston C. M. (1989) Construction and characterization of a herpes simplex virus type I mutant unable to transduce immediate-early gene expression.J. Virol. 63, 2260–2269.PubMedGoogle Scholar
  2. Balan P., et al. (1994) An analysis of thein vitro andin vivo phenotypes of mutants of herpes simplex virus type 1 lacking glycoproteins of gC, gE, gI or the putative gJ.J. Gen. Virol. 75, 1245–1258.PubMedGoogle Scholar
  3. Bannerman P. G. C., Mirsky R., and Jessen K. R. (1987) Analysis of enteric neurones, glia and their interactions using explant cultures of the myenteric plexus.Dev. Neurosci. 9, 201–227.PubMedGoogle Scholar
  4. Brown S. M., Harland J., Maclean A. R., Podlech J., and Barklie Clements J. (1994) Cell type and cell state determine differentialin vitro growth of non-neurovirulent ICP34. 5 negative herpes simplex virus types 1 and 2.J. Gen. Virol. 75, 2367–2377.PubMedGoogle Scholar
  5. Chou J. and Roizman B. (1992) The y134. 5 gene of herpes simplex virus 1 precludes neuroblastoma cells from triggering total shut off of protein synthesis characteristic of programmed cell death in neuronal cells.Proc. Natl. Acad. Sci. USA 89, 3266–3270.PubMedCrossRefGoogle Scholar
  6. Coffin R. S., Howard M. K., Cumming D. V. E., Dollery C. M., McEwan J., Yellon D. M., Marber M. S., Maclean A. R., Brown S. M., and Latchman D. S. (1996a) Gene delivery to cardiac cellsin vitro andin vivo using herpes simplex virus vectors.Gene Therapy 3, 560–566.PubMedGoogle Scholar
  7. Coffin R. S., Maclean A. R., Latchman D. S., and Brown S. M. (1996b) Safe Delivery of a trans-gene to the mouse central or peripheral nervous system using HSV1 ICP34. 5 deletion mutant vectors.Gene Therapy 3, 886–891.PubMedGoogle Scholar
  8. Dobson A. T., Margolis T. P., Sedarati F., Stevens J. G., and Feldman L. T. (1990) A latent nonpathogenic HSV-1 derived vector stably expresses β galactosidase in mouse neurons.Neuron 5, 353–360.PubMedCrossRefGoogle Scholar
  9. During M. J., Naegele J. R., O’Malley K. L., and Geller A. I. (1994) Long-term behavioural recovery in parkinsonian rats by an HSV vector expressing tyrosine hydroxylase.Science 266, 1399–1403.PubMedCrossRefGoogle Scholar
  10. Fukuda J., Kurata T., Yamamoto A., and Yamaguchi K. (1983) Morphological and physiological studies on cultured nerve cells from guinea pigs infected with herpes simplex virusin vivo.Brain Res. 262, 79–89.PubMedCrossRefGoogle Scholar
  11. Gage F. H., Wolff J. A., Rosenberg M. B., Xu L., Yee J.-K., Schults C., and Friedman T. (1987) Grafting genetically modified cells to the brain: possibilities for the future.Neuroscience 23, 795–807.PubMedCrossRefGoogle Scholar
  12. Hardwicke M. A., Vaughn P. J., Sekulovich R. E., O’Conner R., and Sandri-Goldin R. M. (1989) The regions important for the activator and repressor functions of herpes simplex virus type-1 alpha protein ICP27 map to the c-terminal half of the molecule.J. Virol. 63, 4590–4602.PubMedGoogle Scholar
  13. Horellou P., Vigne E., Castel M. N., Barneoud P., Colin P., Perricaudet M., Delare P., and Mallet J. (1994) Direct intracerebral gene transfer of an adenoviral vector expressing tyrosine hydroxylase in a rat model of Parkinson’s disease.NeuroReport 6, 49–53.PubMedCrossRefGoogle Scholar
  14. Jessen K. R. and Burnstock G. (1982) The enteric nervous system in tissue culture: a new mammalian model for the study of complex nervous networks.Trends Autonomic Pharmacol. 2, 95–115.Google Scholar
  15. Jessen K. R., Saffrey M. J., Baluk P., Hanani M., and Burnstock G. (1983) The enteric nervous system in tissue culture III. Studies on neuronal survival and the retention of biochemical and morphological differentiation.Brain Res. 262, 49–62.PubMedCrossRefGoogle Scholar
  16. Kaplitt M. G., Leone P., Samulski R. J., Xiao X., Pfaff D. W., O’Malley K. L., and During M. J. (1994) Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain.Nature Genet. 8, 148–154.PubMedCrossRefGoogle Scholar
  17. Latchman D. S. (1990) Molecular biology of Herpes simplex virus latency.J. Exper. Pathol. 71, 133–141.Google Scholar
  18. Latchman D. S. (1994) Herpes simplex virus vectors for gene therapy.Mol. Biotechnol. 2, 179–195.PubMedGoogle Scholar
  19. Latchman D. S. (1995)Genetic Manipulation of the Nervous System. Academic, New York.Google Scholar
  20. Lillycrop K. A., Dent C. L., Wheatley S. C., Beech M. N., Ninkina N. N., Wood J. N., and Latchman D. S. (1991) The octamer binding protein Oct-2 represses HSV immediate early genes in cell lines derived from latently infectable sensory neurons.Neuron 7, 381–390.PubMedCrossRefGoogle Scholar
  21. Maclean A. R., Fareed M. U., Robertson L., Harland J., and Brown S. M. (1991) Herpes Simplex Virus type 1 deletion variants 1714 and 1716 pinpoint.J. Gen. Virol 72, 631–639.PubMedCrossRefGoogle Scholar
  22. Macpherson I. and Stoker M. (1962) Polyoma transformation of hamster cell clones—an investigation of the genetic factors affecting cell competence.Virology 16, 147–151.PubMedCrossRefGoogle Scholar
  23. Miller A. G., Adam M. A., and Miller A. D. (1990) Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection.Mol. Cell. Biol. 10, 4239–4242.PubMedGoogle Scholar
  24. O’Hare P. and Goding C. R. (1988) Herpes Simplex virus regulatory elements and the immunoglobulin octamer domain bind a common factor and are both targets for virion transactivation.Cell 52, 435–445.PubMedCrossRefGoogle Scholar
  25. Olsen L. C., Buescher E. L., Artenstein M. S., and Parteman P. D. (1967) Herpes virus infections of the human central nervous system.New Engl. J. Med. 277, 1271–1277.CrossRefGoogle Scholar
  26. Roizman B. and Sears A. E. (1987) An inquiry into the mechanisms of herpes simplex virus latency.Ann. Rev. Microbiol. 41, 543–571.CrossRefGoogle Scholar
  27. Rosenberg M. B., Friedmann T., Robertson R. C., Tuszynski M., Wolff J. A., Breakfield X. O., and Gage F. H. (1988) Grafting genetically modified cells to the damaged brain: restorative effects of NGF expression.Science 242, 1575–1578.PubMedCrossRefGoogle Scholar
  28. Sacks W. R., Greene C. C., Aschmann D. P., and Schaffer P. A. (1985) Herpes simplex virus type 1 ICP27 is an essential regulatory protein.J. Virol. 55, 796–805.PubMedGoogle Scholar
  29. Saffrey M. J., Bailey D. J., and Burnstock G. (1991) Growth of enteric neurones from isolated myenteric ganglia in dissociated cell culture.Cell Tissue Res. 265, 527–534.PubMedCrossRefGoogle Scholar
  30. Tew E. M. M., Anderson P. N., and Burnstock G. (1992) Implantation of the myenteric plexus into the corpus striatum of adult rats: survival of the neurons and glia and interactions with host brain.Restorative Neurol. Neurosci. 4, 311–321.Google Scholar
  31. Tew E. M. M., Anderson P. N., Saffrey M. J., and Burnstock G. (1994) Transplantation of the postnatal rat myenteric plexus into the adult rat corpus striatum: an electron microscopic study.Exp. Neurol. 129, 120–129.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1997

Authors and Affiliations

  • M. Keith Howard
    • 1
  • Robert S. Coffin
    • 1
  • Alistair R. Maclean
    • 2
  • S. Moira Brown
    • 3
  • Doreen Bailey
    • 4
  • Patricia N. Anderson
    • 4
  • Geoffrey Burnstock
    • 4
  • David S. Latchman
    • 1
  1. 1.Department of Molecular PathologyUniversity College London Medical SchoolLondon
  2. 2.Institute of VirologyGlasgow UniversityGlasgow
  3. 3.Department of NeurologyGlasgow UniversityGlasgow
  4. 4.Department of Anatomy and Developmental BiologyUniversity College LondonLondon

Personalised recommendations