Journal of Molecular Neuroscience

, Volume 7, Issue 2, pp 135–146 | Cite as

Molecular dissection of corticosteroid action in the rat hippocampus

Application of the differential display technique
  • Erno Vreugdenhil
  • Jeannette de Jong
  • Marcel J. M. Schaaf
  • Onno C. Meijer
  • Jolanda Busscher
  • Chrétienne Vuijst
  • E. Ron de Kloet
Article

Abstract

Both adrenal steroids and glutamate are crucial for hippocampal cell viability. In order to identify adrenal steroid- and glutamate-responsive genes controlling hippocampal cell viability, we have used the PCR-based differential display method. We have described the characteristics of this technique and how it can be automated. Using differential display, we have identified a number of rat hippocampal genes of which the expression is affected by a combination of the glutamate analog kainic acid and adrenalectomy. Administration of kainic acid or removal of the adrenals alone gave a limited number of differentially displayed genes. Therefore, our results indicate that the main mode of corticosteroid receptor-controlled gene expression in the hippocampus is interaction with other transcription factors (e.g., CREB, AP-1) and not by binding to hormone-responsive elements of corticosterone-specific genes. Characterization by multiplex PCR experiments of a differentially displayed fragment of which the expression is increased by the combination of kainic acid and adrenalectomy confirmed our differential display results. Further characterization by DNA sequence analysis of the corresponding full-length cDNA clone revealed a gene product with 91.4% sequence identity with the mouse transcription factor KROX-20, suggesting that we have cloned the rat homolog. This finding suggests a role of KROX-20 in corticosteroid- and kainic acid-controlled hippocampal plasticity.

Index Entries

Differential display kainic acid KROX-20 neurodegeneration transrepression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbany G. and Persson H. (1993) Adrenalectomy attenuates kainic acid-elicited increases of messenger RNAs for neurotrophins and their receptors in the rat brain.Neuroscience 54, 909–922.PubMedCrossRefGoogle Scholar
  2. Bauer D., Muller H., Reich J., Riedel H., Ahrenkiel V., Warthoe P., and Strauss M. (1993) Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR).Nucleic Acids Res. 21, 4272–4280.PubMedCrossRefGoogle Scholar
  3. Caldenhoven E., Liden J., Wissink S., van de Stolpe A., Raaijmakers J., Koenderman L., Okret S., Gustafsson J.-A., and van der Saag P. T. (1995) Negative cross-talk between RelA and the glucocorticoid receptor: a possible mechanism for the antiinflammatory action of glucocorticoids.Mol. Endocrinol. 9, 401–412.PubMedCrossRefGoogle Scholar
  4. Cameron H., McEwen B., and Gould E. (1995) Regulation of adult neurogenesis by excitatory input and NMDA activation in the dentate gyrus.J. Neurosci. 15, 4687–4692.PubMedGoogle Scholar
  5. Chavrier P., Zerial M., Lemaire P., Almendral J., Bravo R., and Charnay P. (1988) A gene encoding a protein with zinc fingers is activated during G0/G1 transition in cultured cells.EMBO J. 7, 29–35.PubMedGoogle Scholar
  6. Chencik A., Moqadam F., and Siebert P. (1995) Marathon cDNA amplification: a new method for cloning full-length cDNAs.Clontechniques 10, 5–8.Google Scholar
  7. Dragunow M. and Preston K. (1995) The role of inducible transcription factors in apoptotic nerve cell death.Brain Res. Rev. 21, 1–28.PubMedCrossRefGoogle Scholar
  8. Estus S., Zaks W. J., Freeman R. S., Gruda M., Bravo R., and Johnson E. M. Jr. (1994) Altered gene expression in neurons during programmed cell death: identification of c-jun as necessary for neuronal apoptosis.J. Cell Biol. 127, 1717–1727.PubMedCrossRefGoogle Scholar
  9. Gass P., Herdegen T., Bravo R., and Kiessling M. (1992) Induction of immediate early gene (IEG) products in the rat hippocampus after bicuculline-induced seizures: differential expression of KROX-24, FOS and JUN proteins.Neuroscience 48, 315–324.PubMedCrossRefGoogle Scholar
  10. Gass P., Herdegen T., Bravo R., and Kiessling M. (1994) High induction threshold for transcription factor KROX-20 in the rat brain: partial co-expression with heath shock protein 70 following limbic seizures.Mol. Brain Res. 23, 292–298.PubMedCrossRefGoogle Scholar
  11. Gould E. and McEwen B. S. (1993) Neuronal birth and death.Curr. Opin. Neurobiol. 3, 676–682.PubMedCrossRefGoogle Scholar
  12. Gould E., Cameron H., and McEwen B. S. (1994) Blockade of NMDA receptors increases cell death and birth in the developing rat dentate gyrus.J. Comp. Neurol. 340, 551–565.PubMedCrossRefGoogle Scholar
  13. Heck S., Kullmann M., Gast A., Ponta H., Rahmsdorf H. J., Herrlich P., and Cato A. C. B. (1994) A distinct modulating domain in the glucocorticoid receptor monomers in the repression of activity of the transcription factor AP-1.EMBO J. 13, 4087–4095.PubMedGoogle Scholar
  14. Herdegen T., Brecht S., Mayer B., Leah J., Kummer W., Bravo R., and Zimmerman M. (1993) Long lasting expression of JUN and KROX transcription factors and nitric oxide synthetase in intrinsic neurons of the rat brain following axotomy.J. Neurosci. 13, 4130–4146.PubMedGoogle Scholar
  15. Hubank M. and Schatz D. G. (1994) Identifying differences in mRNA expression by representational difference analysis of cDNA.Nucleic Acids Res. 22, 5640–5648.PubMedCrossRefGoogle Scholar
  16. Joëls M. and de Kloet E. R. (1994) Mineralocorticoid and glucocorticoid receptors in the brain. Implications for ion permeability and transmitter systems.Prog. Neurobiol. 43, 1–36.PubMedCrossRefGoogle Scholar
  17. Liang P. and Pardee A. B. (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction.Science 257, 967–971.PubMedCrossRefGoogle Scholar
  18. Liang P. and Pardee A. B. (1995) Recent advances in differential display.Curr. Opin. Immunol. 7, 274–280.PubMedCrossRefGoogle Scholar
  19. Linskens M. H. K., Feng J., Andrews W. H., Enlow B. E., Saati S. M., Tonkin L. A., Funk W. D., and Villeponteau B. (1995) Cataloging altered gene expression in young and senescent cells using enhanced differential display.Nucleic Acids Res. 23, 3244–3251.PubMedCrossRefGoogle Scholar
  20. Livesey F. J. and Hunt S. P. (1996) Identifying changes in gene expression in the nervous system: mRNA differential display.TINS 19, 84–88.PubMedGoogle Scholar
  21. Meijer O. C. and de Kloet E. R. (1995) A role for the mineralocorticoid receptor in a rapid and transient suppression of hippocampal 5-HT1A receptor mRNA by corticosterone.J. Neuroendocrinol. 7, 653–657.PubMedCrossRefGoogle Scholar
  22. Mou L., Miller H., Li J., Wang E., Chalifour L. (1994) Improvements to the differential display method for gene analysis.Biochem. Biophys. Res. Comm. 199, 564–569.PubMedCrossRefGoogle Scholar
  23. Rosen M. B., Francis B. M., and Chernoff N. (1994) Subtractive hybridization: a technique for the isolation of differentially expressed genes.Toxicol. Methods 2, 135–147.Google Scholar
  24. Sakhi S., Bruce A., Sun N., Tocco G., Baudry M., and Schreiber S. S. (1994) P53 induction is associated with neuronal damage in the central nervous system.Proc. Natl. Acad. Sci. USA 91, 7525–7529.PubMedCrossRefGoogle Scholar
  25. Sapolsky R. M., Uno H., Rebert C., and Finch C. (1990) Hippocampal damage associated with prolonged glucocorticoid exposure in primates.J. Neurosci. 10, 2897–2902.PubMedGoogle Scholar
  26. Sapolsky R. M. and Pulsinelli W. A. (1985) Glucocorticoids potentiate ischemic injury to neurons: therapeutic implications.Science 229, 1397–1400.PubMedCrossRefGoogle Scholar
  27. Sapolsky R. M. (1986) Glucocorticoid toxicity in the hippocampus: temporal aspects of synergy with kainic acid.Neuroendocrinology 43, 386–391.Google Scholar
  28. Schreiber S. S., Sakhi S., Dugich-Djordjevic M. M., and Nichols N. R. (1994) Tumor suppressor p53 induction and DNA damage in hippocampal granule cells after adrenalectomy.Exp. Neurol. 130, 368–376.PubMedCrossRefGoogle Scholar
  29. Sloviter R. S., Valiquette G., Abrams G. M., Ronk E., Sollas A., Paul L. A., and Neubort S. (1989) Selective loss of hippocampal granule cells in the mature rat brain after adrenalectomy.Science 243, 535–538.PubMedCrossRefGoogle Scholar
  30. Sloviter R. S., Sollas A. L., Dean E., and Neubort S. (1993a) Electron microscopic analysis of adrenalectomy-induced hippocampal granule cell degeneration in the rat: apoptosis in the adult central nervous system.J. Comp. Neurol. 330, 337–351.PubMedCrossRefGoogle Scholar
  31. Sloviter R. S., Sollas A. L., Dean E., and Neubort S. (1993b) Adrenalectomy-induced granule cell degeneration in the rat hippocampal dentate gyrus: characterization of an in vivo model of controlled neuronal death.J. Comp. Neurol. 330, 324–336.PubMedCrossRefGoogle Scholar
  32. Stein-Behrens B., Mattson M. P., Chang I., Yeh M., and Sapolsky R. M. (1994) Stress exacerbates neuron loss and cytoskeletal pathology in the hippocampus.J. Neurosci. 14, 5373–5380.PubMedGoogle Scholar
  33. Topilko P., Schneider-Maunoury S., Levi G., Baron-Van Evercooren A., Ben Younes Chennoufi A., Seltanidou T., Babinet C., and Charnay P. (1994) Krox-20 controls myelination in the peripheral nervous system.Nature 371, 796–799.PubMedCrossRefGoogle Scholar
  34. Unlap T. and Jope R. S. (1994) Dexamethasone attenuates kainate-induced AP-1 activation in rat brain.Mol. Brain Res. 24, 275–282.PubMedCrossRefGoogle Scholar
  35. Van Steensel B. (1995) PhD thesis. E.C. Slater Institute. University of Amsterdam. Plantage Muidergracht 12, Amsterdam, The Netherlands.Google Scholar
  36. Vreugdenhil E., Jackson J. F. Bouwmeester T., Smit A. B., van Minnen J., van Heerikhuizen H., Klootwijk J., and Joosse J. (1988) Isolation, characterization and evolutionary aspects of a cDNA clone encoding multiple neuropeptides involved in a stereotyped egg-laying behavior ofLymnaea stagnalis.J. Neurosci. 8, 4184–4191.PubMedGoogle Scholar
  37. Welsh J., Chada K., Dalal S. S., Cheng R., Ralph D., and McClelland M. (1992) Arbitrary primed PCR fingerprinting of RNA.Nucleic Acids Res. 20, 4965–4970.PubMedCrossRefGoogle Scholar
  38. Wilkinson D., Bhatt S., Chavrier P., Bravo R., and Charnay P. (1989) Segment-specific expression of a zinc-finger gene in the developing nervous system of the mouse.Nature 337, 461–464.PubMedCrossRefGoogle Scholar
  39. Williams J., Dragunow M., Lawlor P., Mason S., Abraham W. C., Leah J., Bravo R., Demmer J., and Tate W. (1995) Krox20 may play a key role in the stabilization of long-term potentiation.Mol. Brain Res. 28, 87–93.PubMedCrossRefGoogle Scholar
  40. Woolley C. S., Gould E., and McEwen B. S. (1990) Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons.Brain Res. 531, 225–231.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1996

Authors and Affiliations

  • Erno Vreugdenhil
    • 1
  • Jeannette de Jong
    • 1
  • Marcel J. M. Schaaf
    • 1
  • Onno C. Meijer
    • 1
  • Jolanda Busscher
    • 1
  • Chrétienne Vuijst
    • 1
  • E. Ron de Kloet
    • 1
  1. 1.Leiden/Amsterdam Center for Drug Research, Division of Medical PharmacologyUniversity of LeidenLeidenThe Netherlands

Personalised recommendations