Journal of Molecular Neuroscience

, Volume 6, Issue 4, pp 237–248 | Cite as

Neurotrophins and theirtrk receptors in cultured cells of the glial lineage and in white matter of the central nervous system

  • Daniele F. Condorelli
  • Tuija Salin
  • Paola Dell’Albani
  • Giuseppa Mudò
  • Massimo Corsaro
  • Tonis Timmusk
  • Madis Metsis
  • Natale Belluardo


Previous studies have analyzed the expression of different members of the neurotrophin family and theirtrk receptors in glial cultures composed mainly or exclusively of type-1 astrocytes, whereas only partial data have been published on other cultured glial types. In this article we compare the mRNA levels for neurotrophins (NGF, BDNF, NT-3, NT-4) and their high-affinity receptors (trkA,trkB,trkC) in cultures enriched in specific glial types, such as microglia, type-1 astroglia, and cells of the O/2A lineage (type-2 astroglia and oligodendroglia). Relatively high levels of NGF mRNA (comparable to those observed in adult rat cerebral cortex) are present in all types of cultured glial cells, except for a low level of expression in cultures enriched in microglial cells. In contrast, BDNF mRNA is undetectable in all cultures examined. NT-3 and NT-4 mRNA molecules, at a level equal to that observed in adult rat cerebral cortex, are easily detected in type-1 astrocyte cultures, whereas their hybridization signals are undetectable in cells of the O/2A lineage and in microglial cultures. The analysis of neurotrophin receptor mRNAs confirms the absence oftrkA mRNA, the presence of relatively high levels oftrkB mRNA (70–100% of cerebral cortex values), and low levels oftrkC mRNA (10–18% of cerebral cortex values) in both cultured astroglial and oligodendroglial cells. Only very low levels oftrkB andtrkC mRNAs are observed in microglial cultures. Although cultured glial cells express mainly mRNAs encoding for the truncated form oftrkB andtrkC, a low level of mRNA encoding for the full-length catalytic form of these receptors is detected by the sensitive ribonuclease protection assay. However, NT-3 and NT-4 increasezif/268 expression in oligodendroglial cultures, but not in type-1 astroglial cultures. The presence of these transcripts has been also examined in white matter regions that are devoid of neuronal cell bodies and enriched in glial cells (optic nerve and the corpus callosum). Both corpus callosum and optic nerve show the presence of NGF, NT-3, and NT-4 mRNA, whereas BDNF mRNA level is very low or undetectable;trkA mRNA is absent, although both the truncated and full-lengthtrkB andtrkC mRNA are detected. In conclusion, in vivo (central nervous system white matter) and in vitro (glial cultures) results support the hypothesis that cells of the glial lineage can be both a source of neurotrophins and a cellular target for their actions.

Index Entries

Astroglia oligodendroglia neurotrophins trktrktrkoptic nerve corpus callosum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aloisi F., Agresti C., and Levi G. (1988) Establishment, characterization, and evolution of cultures enriched in type-2 astrocytes.J. Neurosci. Res. 21, 188–198.PubMedCrossRefGoogle Scholar
  2. Althaus H. H., Kloppner S., Schmidt-Schultz T., and Schwartz P. (1992) Nerve growth factor induces proliferation and enhances fiber regeneration in oligodendrocytes isolated from adult pig brain.Neurosci. Lett. 135, 219–223.PubMedCrossRefGoogle Scholar
  3. Armstrong R. C., Harvath L., and Dubois-Dalcq M. E. (1990) Type 1 astrocytes and oligodendrocyte-type 2 astrocyte glial progenitors migrate toward distinct molecules.J. Neurosci. Res. 27, 400–407.PubMedCrossRefGoogle Scholar
  4. Avola R., Condorelli D. F., Surrentino S., Turpeenoja L., Costa A., and Giuffrida Stella A. M. (1988) Effect of epidermal growth factor and insulin on DNA, RNA and cytoskeletal proteins labeling in primary rat astroglial cell cultures.J. Neurosci. Res. 19, 230–238.PubMedCrossRefGoogle Scholar
  5. Barres B. A., Schmid R., Sendnter M., and Raff M. C. (1993) Multiple extracellular signals are required for long-term oligodendrocyte survival.Development 118, 283–295.PubMedGoogle Scholar
  6. Barres B. A., Raff M. C., Gaese F., Bartke I., Dechant G., and Barde Y. A. (1994) A crucial role for neurotrophin-3 in oligodendrocyte development.Nature 367, 371–375.PubMedCrossRefGoogle Scholar
  7. Beck K. D., Lamballe F., Klein R., Barbacid M., Schauwecker P. E., McNeill T. H., Finch C. E., Hefti F., and Day J. R. (1993) Induction of noncatalytic TrkB neurotrophin receptors during axonal sprouting in the adult hippocampus.J. Neurosci. 13, 4001–4014.PubMedGoogle Scholar
  8. Behar T., McMorris F. A., Novotny E. A., Barker J. L., and Dubois-Dalq M. (1988) Growth and differentiation proprieties of O-2A progenitors from rat cerebral hemispheres.J. Neurosci. Res. 21, 168–180.PubMedCrossRefGoogle Scholar
  9. Carman-Krzan M., Vigé X., and Wise B. C. (1991) Regulation by interleukin-1 of nerve growth factor secretion and nerve growth factor mRNA expression in rat primary astroglial cultures.J. Neurochem. 56, 636–643.PubMedCrossRefGoogle Scholar
  10. Ceccatelli S., Ernfors P., Villar M. J., Persson H., and Hokfelt T. (1991) Expanded distribution of mRNA for nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3 in the rat brain after colchicine treatment.Proc. Natl. Acad. Sci. USA 88, 10,352–10,356.CrossRefGoogle Scholar
  11. Chao M. V. (1992) Neurotrophin receptors: a window into neuronal differentiation.Neuron 9, 583–593.PubMedCrossRefGoogle Scholar
  12. Chomczynski P. and Sacchi N. (1987) Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction.Anal. Biochem. 162, 156–159.PubMedCrossRefGoogle Scholar
  13. Christy B. A., Lau L. F., and Nathans D. (1988) A gene activated in mouse 3T3 cells by serum growth factors encodes a protein with “zinc finger” sequences.Proc. Natl. Acad. Sci. USA 85, 7857–7861.PubMedCrossRefGoogle Scholar
  14. Condorelli D. F., Dell’Albani P., Amico C., Kaczmarek L., Nicoletti F., Lukasiuk K., and Giuffrida-Stella A. M. (1993) Induction of primary response genes by excitatory amino acid receptor agonists in primary astroglial cultures.J. Neurochem. 60, 877–885.PubMedCrossRefGoogle Scholar
  15. Condorelli D. F., Dell’Albani P., Mudò G., Timmusk T., and Belluardo N. (1994) Expression of neurotrophins and their receptors in primary astroglial cultures: induction by cAMP-elevating agents.J. Neurochem. 63, 509–516.PubMedCrossRefGoogle Scholar
  16. Elkabes S., Schaar D. G., Dreyfus C. F., and Black I. B. (1995) Developmental regulation of neurotrophin-3 and TrkC splice variants in optic nerve glia in vivo.Neuroscience 66, 879–889.PubMedCrossRefGoogle Scholar
  17. Ernfors P., Ibanez C. F., Ebendal T., Olson L., and Persson H. (1990) Molecular cloning and neurotrophic activities of a protein with structural similarities to nerve growth factor: developmental and topographical expression in the brain.Proc. Natl. Acad. Sci. USA 87, 5454–5458.PubMedCrossRefGoogle Scholar
  18. Espinosa de los Monteros A., Zhang M. S., Gordon M., and Aymie M., and de Vellis J. (1992) Transplantation of cultured premyelinating oligodendrocytes into normal and myelin-deficient rat brain.Dev. Neurosci. 14, 98–104.Google Scholar
  19. Frei K., Bodmer S., Schwerdel C., and Fontana A. (1986) Astrocyte-derived interleukin 3 as a growth factor for microglia cells and peritoneal macrophages.J. Immunol. 137, 3521–3527.PubMedGoogle Scholar
  20. Frisen J., Verge V. M., Fried K., Risling M., Persson H., Trotter J., Hokfelt T., and Lindholm D. (1993) Characterization of glial trkB receptors: differential response to injury in the central and peripheral nervous systems.Proc. Natl. Acad. Sci. USA 90, 4971–4975.PubMedCrossRefGoogle Scholar
  21. Furukawa S., Furukawa Y., Satoyoshi E., and Hayashi K. (1987) Synthesis/secretion of nerve growth factor is associated with cell growth in cultured mouse astroglial cells.Biochem. Biophys. Res. Commun. 142, 395–402.PubMedCrossRefGoogle Scholar
  22. Gonzales D., Les Dees W., Hiney J. K., Ojeda S. R., and Saneto R. P. (1990) Expression of β-nerve growth factor in cultured cells derived from the hypothalamus and cerebral cortex.Brain Res. 511, 249–258.CrossRefGoogle Scholar
  23. Houlgatte R., Mallet M., Brachet P., and Prochiantz A. (1989) Secretion of nerve growth factor in cultures of glial cells and neurons derived from different regions of the mouse brain.J. Neurosci. Res. 24, 143–152.PubMedCrossRefGoogle Scholar
  24. Hutton L. A., deVellis J., and Perez Polo J. R. (1992) Expression of p75NGFR TrkA, and TrkB and mRNA in rat C6 glioma and type I astrocyte cultures.J. Neurosci. Res. 32, 375–383.PubMedCrossRefGoogle Scholar
  25. Ingraham C. A. and McCarthy K. D. (1989) Plasticity of process-bearing glial cell cultures from neonatal rat cerebral cortical tissue.J. Neurosci. 9, 63–69.PubMedGoogle Scholar
  26. Juurlink B. H. J. and Hertz L. (1991) Establishment of highly enriched type-2 astrocytes cultures and quantitative determination of intense glutamine synthetase activity in these cells.J. Neurosci. Res. 30, 531–539.PubMedCrossRefGoogle Scholar
  27. Klein R., Conway D., Parada L. F., and Barbacid M. (1990) The trkB tyrosine protein kinase gene codes for a second neurogenic receptor that lacks the catalytic kinase domain.Cell 61, 647–656.PubMedCrossRefGoogle Scholar
  28. Klein R., Lamballe F., Bryant S., and Barbacid M. (1992) The trkB tyrosine kinase is a receptor for neurotrophin-4.Neuron 8, 947–956.PubMedCrossRefGoogle Scholar
  29. Kumar S., Huber J., Pena L. A., Perez Polo J. R., Werrbach-Perez K., and de Vellis J. (1990) Characterization of functional nerve growth factor-receptors in a CNS glial cell line: monoclonal antibody 217c recognizes the nerve growth factor-receptor on C6 glioma cells.J. Neurosci. Res. 27, 408–417.PubMedCrossRefGoogle Scholar
  30. Kumar S., Pena L. A., and de Vellis J. (1993) CNS glial cells express neurotrophin receptors whose levels are regulated by NGF.Brain Res. Mol. Brain Res. 17, 163–168.PubMedCrossRefGoogle Scholar
  31. Lamballe F., Tapley P., and Barbacid M. (1993) trkC encodes multiple neurotrophin-3 receptors with distinct biological properties and substrate specificities.EMBO J. 12, 3083–3094.PubMedGoogle Scholar
  32. Levi G. and Ciotti M. T. (1986) Bipotential precursors of putative fibrous astrocytes and oligodendrocytes in rat cerebellar cultures express distinct surface features and “neuron-like” gamma-aminobutyric acid transport.Proc. Natl. Acad. Sci. USA 83, 1504–1508.PubMedCrossRefGoogle Scholar
  33. Lu B., Yokoyama M., Dreyfus C. F., and Black I. B. (1991) NGF gene expression in actively growing brain glia.J. Neurosci. 11, 318–326.PubMedGoogle Scholar
  34. Martin-Zanca D., Oskam R., Mitra G., Copeland T., and Barbacid M. (1989) Molecular and biochemical characterization of the humantrk proto-oncogene.Mol. Cell. Biol. 9, 24–33.PubMedGoogle Scholar
  35. McCarthy K. D. and de Vellis J. (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue.J. Cell Biol. 85, 890–902.PubMedCrossRefGoogle Scholar
  36. Merlio J. P., Ernfors P., Jaber M., and Persson H. (1992) Molecular cloning of rat trkC and distribution of cells expressing messenger RNAs for members of the trk family in the rat central nervous system.Neuroscience 51, 513–532.PubMedCrossRefGoogle Scholar
  37. Middlemas D. S., Lindberg R. A., and Hunter T. (1991) trkB, a neural receptor protein-tyrosine kinase: evidence for a full-length and two truncated receptors.Mol. Cell. Biol. 11, 143–153.PubMedGoogle Scholar
  38. Raff M. C., Abney E. R., Cohen J., Lindsay R., and Noble M. (1983a) Two types of astrocytes in cultures of developing rat white matter: differences in morphology, surface gangliosides, and growth characteristics.J. Neurosci. 3, 1289–1300.PubMedGoogle Scholar
  39. Raff M. C., Miller R. H., and Noble M. (1983b) A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending upon culture medium.Nature 303, 390–396.PubMedCrossRefGoogle Scholar
  40. Raff M. C. (1989) Glial cell diversification in the rat optic nerve.Science 243, 1450–1455.PubMedCrossRefGoogle Scholar
  41. Rudge J. S., Alderson R. F., Pasnikowski E. M., McClain J., Ip N. Y., and Lindsay R. M. (1992) Expression of ciliary neurotrophic factor and the neurotrophins—nerve growth factor, brain derived neurotrophic factor and neurotrophin 3—in cultured rat hippocampal astrocytes.Eur. J. Neurosci. 4, 459–471.PubMedCrossRefGoogle Scholar
  42. Rudge J. S., Li Y., Pasnikowski E. M., Mattsson K., Yancopoulos G. D., Pan L., Wiegand S. J., Lindsay R. M., and Ip N. Y. (1994) Neurotrophic factor receptors and their signal transduction capabilities in rat astrocytes.Eur. J. Neurosci. 6, 693–705.PubMedCrossRefGoogle Scholar
  43. Saneto R. P. and deVellis J. (1985) Characterization of cultured rat oligodentrocytes proliferating in a serum free, chemically defined medium.Proc. Natl. Acad. Sci. USA 82, 3509–3513.PubMedCrossRefGoogle Scholar
  44. Thoenen H. (1991) The changing scene of neurotrophic factors.Trends Neurosci. 14, 165–170.PubMedCrossRefGoogle Scholar
  45. Timmusk T., Belluardo N., Metsis M., and Persson H. (1993) Widespread and developmentally regulated expression of neurotrophin-4 mRNA in rat brain and peripheral tissues.Eur. J. Neurosci. 5, 605–613.PubMedCrossRefGoogle Scholar
  46. Trotter J. and Schachner M. (1989) Cells positive for the O4 surface antigen isolated by cell sorting are able to differentiate into astrocytes or oligodentrocytes-enriched cultures from rat brain.Dev. Brain Res. 46, 115–122.CrossRefGoogle Scholar
  47. Tsoulfas P., Soppet D., Escandon E., Tessarollo L., Mendoza Ramirez J. L., Rosenthal A., Nikolics K., and Parada L. F. (1993) The rat trkC locus encodes multiple neurogenic receptors that exhibit differential response to neurotrophin-3 in PC12 cells.Neuron 10, 975–990.PubMedCrossRefGoogle Scholar
  48. Valenzuela D. M., Maisonpierre P. C., Glass D. J., Rojas E., Nunez L., Kong Y., Gies D. R., Stitt T. N., Ip N. Y., and Yancopoulos G. D. (1993) Alternative forms of rat TrkC with different functional capabilities.Neuron 10, 963–974.PubMedCrossRefGoogle Scholar
  49. Zafra F., Lindholm D., Castren E., Hartikka J., and Thoenen H. (1992) Regulation of brain-derived neurotrophic factor and nerve growth factor mRNA in primary cultures of hippocampal neurons and astrocytes.J. Neurosci. 12, 4793–4799.PubMedGoogle Scholar
  50. Zhou X. F., Parada L. F., Soppet D., and Rush R. A. (1993) Distribution of trkB tyrosine kinase immunoreactivity in the rat central nervous system.Brain Res. 622, 63–70.PubMedCrossRefGoogle Scholar
  51. Zhou X. F. and Rush R. A. (1994) Localization of neurotrophin-3-like immunoreactivity in the rat central nervous system.Brain Res. 643, 162–172.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1996

Authors and Affiliations

  • Daniele F. Condorelli
    • 1
  • Tuija Salin
    • 3
  • Paola Dell’Albani
    • 4
  • Giuseppa Mudò
    • 2
  • Massimo Corsaro
    • 1
  • Tonis Timmusk
    • 3
  • Madis Metsis
    • 3
  • Natale Belluardo
    • 2
  1. 1.Institute of BiochemistryUniversity of CataniaItaly
  2. 2.Institutes of Human Physiology, Faculty of MedicineUniversity of CataniaItaly
  3. 3.Department of Medical Biochemistry and Biophysics, Laboratory of Molecular NeurobiologyKarolinska InstituteStockholmSweden
  4. 4.Istituto di Bioimmagini e Fisiopatologia del SNCCNRCataniaItaly

Personalised recommendations