Journal of Molecular Neuroscience

, Volume 6, Issue 2, pp 109–119 | Cite as

Cloning and promoter analysis of the human B-50/GAP-43 gene

  • Piet C. de Groen
  • Bart J. L. Eggen
  • Willem Hendrick Gispen
  • Peter Schotman
  • Loes H. Schrama


We here report isolation of exon 1 and analysis of the human B-50 promoter. A human genomic λEMBL3 library was screened with a homologous PCR probe. Two independent clones were analyzed and partially sequenced: They contained up to 5 kb sequence upstream of the translation start site and approx 13 kb of intron 1 sequence. There was a high degree of homology between the rat and the human gene with 100% homology from −504 to −427, with respect to the translation start codon. However, relatively long GT and GA repeats as seen in the rat gene were absent.

Various promoter-reporter constructs, containing 5.0 to 0.12 kb of the upstream region, were transfected into undifferentiated and neuroectodermally differentiated P19-EC. Two promoter activities were found. The minimal fragment with promoter activity still responsive to differentiation was the 0.22 kb construct, similar to rat promoter P2.

We conclude that the human B-50 gene is expressed in a similar way to the rat B-50 gene, based on the presence of two transcripts, the high degree of homology between the rat and the human sequence, and the two promoter activities found in P19-EC cells.

Index Entries

Human B-50/GAP-43 gene promoter P19-EC cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander K. A., Cimler B. M., Meier K. E., and Storm D. R. (1987) Regulation of calmodulin binding to P-57.J. Biol. Chem. 262, 6108–6113.PubMedGoogle Scholar
  2. Basi G. S., Jacobson R. D., Virág I., Schilling J., and Skene J. H. P. (1987) Primary structure and transcriptional regulation of GAP-43, a protein associated with nerve growth.Cell 49, 785–791.PubMedCrossRefGoogle Scholar
  3. Benowitz L. I. and Perrone-Bizzozero N. I. (1991) The expression of GAP-43 in relation to neuronal growth and plasticity: when, where, how, and why?Prog. Brain. Res. 89, 69–87.PubMedGoogle Scholar
  4. Benowitz L. I. and Routtenberg A. (1987) A membrane phosphoprotein associated with neural development, axonal regeneration, phospholipid metabolism, and synaptic plasticity.Trends Neurosci. 10, 527–532.CrossRefGoogle Scholar
  5. Biffo S., Verhaagen J., Schrama L. H., Schotman P., Danho W., and Margolis F. L. (1990) B-50/GAP43 expression correlates with process outgrowth in the embryonic mouse nervous system.Eur. J. Neurosci. 2, 487–499.PubMedCrossRefGoogle Scholar
  6. Chiu F.-C., Feng L., Chan S.-O., Padin C., and Federoff H. J. (1995) Expression of neurofilament proteins during retinoic acid-induced differentiation of P19 embryonal carcinoma cells.Mol. Brain. Res. 30, 77–86.PubMedCrossRefGoogle Scholar
  7. Coggins P. J. and Zwiers H. (1991) B-50 (GAP-43)—biochemistry and functional neurochemistry of a neuron-specific phosphoprotein.J. Neurochem. 56, 1095–1106.PubMedCrossRefGoogle Scholar
  8. De Wet J. R., Wood K. V., DeLuca M., Helinski D. R., and Subramani S. (1987) Firefly luciferase gene: structure and expression in mammalian cells.Mol. Cell. Biol. 7, 725–737.PubMedGoogle Scholar
  9. Devereux J., Haeberli P., and Smithies O. (1984) A comprehensive set of sequence analysis programs for the VAX.Nucleic Acids. Res. 12, 387–395.PubMedCrossRefGoogle Scholar
  10. Eggen B. J. L., Nielander H. B., Rensen-De Leeuw M. G. A., Schotman P., Gispen W. H., and Schrama L. H. (1994) Identification of two promoter regions in the rat B-50/GAP-43 gene.Mol. Brain Res. 23, 221–234.PubMedCrossRefGoogle Scholar
  11. Eggen B. J. L., Kleijnen M. F., Verhaagen J., and Schrama L. H. (1995a) Neuron-specificity of rat B-50/GAP-43 promoter P2 in P19-EC cells.Neurosci. Res. Commun. 17, 19–26.Google Scholar
  12. Eggen B. J. L., Brandsma D., Kasperaitis M., Gispen W. H., and Schrama L. H. (1995b) Rat B-50/GAP-43 gene transcription and translation.Brain Res. 690, 73–81.PubMedCrossRefGoogle Scholar
  13. Gispen W. H., Nielander H. B., De Graan P. N. E., Oestreicher A. B., Schrama L. H., and Schotman P. (1991) Role of the growth-associated protein B-50/GAP-43 in neuronal plasticity.Mol. Neurobiol. 5, 61–85.PubMedGoogle Scholar
  14. Graff J. M., Stumpo D. J., and Blackshear P. J. (1989) Characterization of the phosphorylation sites in the chicken and bovine myristoylated alaninerich C kinase substrate protein, a prominent cellular substrate for protein kinase C.J. Biol. Chem. 264, 11,912–11,919.Google Scholar
  15. Han Y. F. and Dokas L. A. (1991) Okadaic acid-induced inhibition of B-50 dephosphorylation by presynaptic membrane-associated protein phosphatases.J. Neurochem. 57, 1325–1331.PubMedCrossRefGoogle Scholar
  16. Jacobson R. D., Virág I., and Skene J. H. P. (1986) A protein associated with axon growth, GAP-43, is widely distributed and developmentally regulated in rat CNS.J. Neurosci. 6, 1843–1855.PubMedGoogle Scholar
  17. Jap Tjoen San E. R. A., Mercken M., Oestreicher A. B., Schotman P., De Laat S. W., and Gispen W. H. (1991) Expression of B-50 (GAP-43) during differentiation of P19 embryonal carcinoma cells.Soc. Neurosci. Abstr. 21, 222. 9Google Scholar
  18. Kosik K. S., Orecchio L. D., Bruns G. A., Benowitz L. I., MacDonald G. P., Cox D. R., and Neve R. L. (1988) Human GAP-43: its deduced amino acid sequence and chromosomal localization in mouse and human.Neuron 1, 127–132.PubMedCrossRefGoogle Scholar
  19. Liu Y. C. and Storm D. R. (1989) Dephosphorylation of neuromodulin by calcineurin.J. Biol. Chem. 264, 12,800–12,804.Google Scholar
  20. Liu Y. C. and Storm D. R. (1990) Regulation of free calmodulin levels by neuromodulin: neuron growth and regeneration.Trends Pharmacol. Sci. 11, 107–111.PubMedCrossRefGoogle Scholar
  21. Nedivi E., Basi G. S., Akey I. V., and Skene J. H. P. (1992) A neural-specific GAP-43 core promoter located between unusual DNA elements that interact to regulate its activity.J. Neurosci. 12, 691–704.PubMedGoogle Scholar
  22. Neve R. L., Perrone-Bizzozero N. I., Finklestein S. P., Zwiers H., Bird E., Kurnit D. M., and Benowitz L. I. (1987) The neuronal growth-associated protein GAP-43 (B-50, F1): specificity, developmental regulation and regional expression of the human and rat genes.Mol. Brain. Res. 2, 177–183.CrossRefGoogle Scholar
  23. Neve R. L., Finch E. A., Bird E. D., and Benowitz L. I. (1988) Growth-associated protein GAP-43 is expressed selectively in associative regions of the adult human brain.Proc. Natl. Acad. Sci. USA 85, 3638–3642.PubMedCrossRefGoogle Scholar
  24. Ng S. G., de la Monte S. M., Conboy G. L., Karns L. R., and Fishman M. C. (1988) Cloning of human GAP-43: growth association and ischemic resurgence.Neuron 1, 133–139.PubMedCrossRefGoogle Scholar
  25. Nielander H. B., Schrama L. H., Van Rozen A. J., Kasparaitis M., Oestreicher A. B., De Graan P. N. E., Gispen W. H., and Schotman P. (1987) Primary structure of the neuron-specific phosphoprotein B-50 is identical to growth-associated protein GAP-43.Neurosci. Res. Commun. 1, 163–172.Google Scholar
  26. Nielander H. B., Schrama L. H., Van Rozen A. J., Kasparaitis M., Oestreicher A. B., Gispen W. H., and Schotman P. (1990) Mutation of serine 41 in the neuron-specific protein B-50 (GAP-43) prohibits phosphorylation by protein kinase C.J. Neurochem. 55, 1442–1445.PubMedCrossRefGoogle Scholar
  27. Nielander H. B., De Groen P. C., Eggen B. J. L., Schrama L. H., Gispen W. H., and Schotman P. (1993) Structure of the human gene for the neural phosphoprotein B-50 (GAP-43).Mol. Brain Res. 19, 293–302.PubMedCrossRefGoogle Scholar
  28. Oestreicher A. B., Dekker L. V., and Gispen W. H. (1986) A radioimmunoassay for the phosphoprotein B-50: distribution in rat brain.J. Neurochem. 46, 1366–1369.PubMedCrossRefGoogle Scholar
  29. Örtoft E., Påhlman S., Andersson G., Parrow V., Betsholtz C., and Hammerling U. (1993) Human GAP-43 gene expression: multiple start sites for initiation of transcription in differentiating human neuroblastoma cells.Mol. Cell. Neurosci. 4, 549–561.CrossRefGoogle Scholar
  30. Plantinga L.-C., Schrama L. H., Eggen B. J. L., Gispen W. H., Verhaagen J., and Lemke G. (1994) B-50/GAP-43 mRNA expression in cultured primary Schwann cells is regulated by cyclic AMP.Neuroreport 5, 2465–2468.PubMedCrossRefGoogle Scholar
  31. Rosenthal A., Chan S. Y., Henzel W., Haskell C., Kuang W.-J., Chen E., Wilcox J. N., Ullrich A., Goeddel D. V., and Routtenberg A. (1987) Primary structure and mRNA localization of protein F1, a growth-related protein kinase C substrate associated with synaptic plasticity.EMBO J. 6, 3641–3646.PubMedGoogle Scholar
  32. Rudnicki M. A. and Mcburney M. W. (1986) Cell culture methods and induction of differentiation of embryonal carcinoma cell lines.IRL Press 19–49.Google Scholar
  33. Sambrook J., Fritsch E. F., and Maniatis T. (1989)Molecular Cloning: a Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  34. Sanger F., Nicklen S., and Coulsen A. R. (1977) DNA sequencing with chain termination inhibitors.Proc. Natl. Acad. Sci. USA 74, 5463–5467.PubMedCrossRefGoogle Scholar
  35. Schrama L. H., Heemskerk F. M. J., and De Graan P. N. E. (1989) Dephosphorylation of protein kinase C phosphorylated B-50/GAP-43 by the calmodulin-dependent phosphatase calcineurin.Neurosci. Res. Commun. 5, 141–147.Google Scholar
  36. Senapathy P., Shapiro M. B., and Harris N. L. (1990) Splice junctions, branch point sites and exons: sequence statistics, identifications and applications to genome project.Meth. Enzymol. 183, 252–280.PubMedCrossRefGoogle Scholar
  37. Skene J. H. P. (1989) Axonal growth-associated proteins.Ann. Rev. Neurosci. 12, 127–156.PubMedCrossRefGoogle Scholar
  38. Skene J. H. P. and Virág I. (1989) Posttranslational membrane attachment and dynamic fatty acylation of a neuronal growth cone protein, GAP-43.J. Cell. Biol. 108, 613–624.PubMedCrossRefGoogle Scholar
  39. Starr R. G., Lu B., and Federoff H. J. (1994) Functional characterization of the rat GAP-43 promoter.Brain Res. 638, 211–220.PubMedCrossRefGoogle Scholar
  40. Strittmatter S. M., Cannon S. C., Ross E. M., Higashijima T., and Fishman M. C. (1993) GAP-43 augments G-protein-coupled receptor transduction in Xenopus laevis oocytes.Proc. Natl. Acad. Sci. USA 90, 5327–5331.PubMedCrossRefGoogle Scholar
  41. Strittmatter S. M., Fankhauser C., Huang P. L., Mashimo H., and Fishman M. C. (1995) Neuronal pathfinding is abnormal in mice lacking the neuronal growth cone protein GAP-43.Cell 80, 445–452.PubMedCrossRefGoogle Scholar
  42. Strittmatter S. M., Vartanian T., and Fishman M. C. (1992) GAP-43 as a plasticity protein in neuronal form and repair.J. Neurobiol. 23, 507–520.PubMedCrossRefGoogle Scholar
  43. Van Holde K. and Zlatanova J. (1994) Unusual DNA structures, chromatin and transcription.Bioessays 16, 59–68.PubMedCrossRefGoogle Scholar
  44. Van Zonneveld A. J., Curriden S. A., and Loskutoff D. J. (1988) Type I plasminogen activator inhibitor gene: functional analysis and glucocorticoid regulation of its promoter.Proc. Natl. Acad. Sci. USA 85, 5525–5529.PubMedCrossRefGoogle Scholar
  45. Vanselow J., Grabzcyk E. Z., Ping J., Baetscher M., Teng S., and Fishman M. C. (1994) GAP-43 transgenic mice: dispersed genomic sequences confer a GAP-43-like expression pattern during development and regeneration.J. Neurosci. 14, 499–510.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 1995

Authors and Affiliations

  • Piet C. de Groen
    • 1
  • Bart J. L. Eggen
    • 2
  • Willem Hendrick Gispen
    • 3
  • Peter Schotman
    • 2
  • Loes H. Schrama
    • 2
  1. 1.Division of GastroenterologyMayo Clinic and FoundationRochester
  2. 2.Laboratory for Physiological ChemistryUtrecht UniversityUtrechtThe Netherlands
  3. 3.Department of Pharmacology, Rudolf Magnus Institute for NeurosciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations