Advertisement

Journal of Molecular Neuroscience

, Volume 6, Issue 3, pp 147–158 | Cite as

Aldolase C/zebrin II and the regionalization of the cerebellum

  • Richard Hawkes
  • Karl Herrup
Minireview

Abstract

The cerebellum is comprised of multiple bands of cells, each with characteristic afferent and efferent projections, and patterns of gene expression. The most studied example of a striped pattern of expression is the antigen recognized by monoclonal antibody antizebrin II. Zebrin II is expressed by subsets of Purkinje cells that form an array of parasagittal bands that extend rostrocaudally throughout the cerebellar cortex, separated by similar bands of Purkinje cells that do not express zebrin II. Recent cloning studies have revealed that the zebrin II antigen is the respiratory isoenzyme aldolase C. This article reviews the cellular and molecular compartmentation of the cerebellum together with the molecular biology of the aldolase C gene, and speculates on possible reasons for a striped pattern of expression.

Index Entries

Purkinje cell pattern formation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn A. H., Dziennis S., Hawkes R., and Herrup K. (1994) The cloning of zebrin II reveals its identity with aldolase C.Development 120, 2081–2090.PubMedGoogle Scholar
  2. Altman J. and Bayer S. A. (1978) Prenatal development of the cerebellar system in the rat. I. Cytogenesis and histogenesis of the deep nuclei and the cortex of the cerebellum.J. Comp. Neurol. 179, 23–48.PubMedCrossRefGoogle Scholar
  3. Arai Y., Kajihara S., Masuda J., Ohishi S., Zen K., Ogata J., and Mukai T. (1994) Position-independent, high-level, and correct regional expression of the rat aldolase C gene in the central nervous system of transgenic mice.Eur. J. Biochem. 221, 253–260.PubMedCrossRefGoogle Scholar
  4. Arsenio-Nunes M. L. and Sotelo C. (1985) Development of the spinocerebellar system in the postnatal rat.J. Comp. Neurol. 237, 291–306.PubMedCrossRefGoogle Scholar
  5. Atsuchi Y., Yamana K., Yatsuki H., Hori K., Ueda S., and Shiokawa K. (1994) Cloning of a brain-type aldolase cDNA and changes in its mRNA level during oogenesis and early embryogenesis inXenopus laevis.Biochim. Biophys. Acta 1218, 153–157.PubMedGoogle Scholar
  6. Banerjee S. A., Hoppe P., Brilliant M., and Chikaraishi D. M. (1992) 5′ flanking sequences of the rat tyrosine hydroxylase gene target accurate tissue-specific, developmental, and transsynaptic expression in transgenic mice.J. Neurosci. 12, 4460–4467.PubMedGoogle Scholar
  7. Brenner M., Kessberth W. C., Su Y., Besnard F., and Messing A. (1994) GFAP promoter directs astrocyte-specific expression in transgenic mice.J. Neurosci. 14, 1030–1037.PubMedGoogle Scholar
  8. Brochu G., Maler L., and Hawkes R. (1990) Zebrin II: a polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum.J. Comp. Neurol. 291, 538–552.PubMedCrossRefGoogle Scholar
  9. Brodmann K. (1909)Vergleichende Lokalisationlehre der Grosshirnrinde. Barth, Leipzig.Google Scholar
  10. Buono P., de Concilis L., Olivetta E., Izzo P., and Salvatore F. (1993) Cis-acting elements in the promoter region of the human aldolase C gene.FEBS Lett. 328, 243–249.PubMedCrossRefGoogle Scholar
  11. Buono P., Paolella G., Mancini F., Izzo P., and Salvatore F. (1988) The complete nucleotide sequence of the gene coding for human aldolase C.Nucleic Acids Res. 16, 4733.PubMedCrossRefGoogle Scholar
  12. Carr D. and Knull H. (1993) Aldolase-tubulin interactions: removal of tubulin C-terminals impairs interactions.Biochem. Biophys. Res. Commun. 195, 289–293.PubMedCrossRefGoogle Scholar
  13. Chavrier P., Vesque C., Galliot B., Vigneron M., Dollé P., Duboule D., and Charnay P. (1990) The segment specific gene Krox-20 encodes a transcription factor with binding sites in the promoter region of the Hox-1.4 gene.EMBO J. 9, 1209–1218.PubMedGoogle Scholar
  14. Doré L., Jacobson C. D., and Hawkes R. (1990) The organization and postnatal development of zebrin II antigenic compartmentation in the cerebellar vermis of the grey opossum,Monodelphis domestica.J. Comp. Neurol. 291, 431–449.PubMedCrossRefGoogle Scholar
  15. Eichele G. (1989) Retinoic acid induces a pattern of digits in anterior half wing buds that lack the zone of polarizing activity.Development 107, 863–867.PubMedGoogle Scholar
  16. Eisenman L. M. and Hawkes R. (1990) 5′-nucleotidase and the mabQ113 antigen share a common distribution in the cerebellar cortex of the mouse.Neuroscience 31, 231–235.CrossRefGoogle Scholar
  17. Eisenman L. M. and Hawkes R. (1993) Antigenic compartmentation in the mouse cerebellar cortex: zebrin and HNK-1 reveal a complex, overlapping molecular topography.J. Comp. Neurol. 335, 586–605.PubMedCrossRefGoogle Scholar
  18. Gravel C., Eisenman L. M., Sasseville R., and Hawkes R. (1987) Parasagittal organization of the rat cerebellar cortex: direct correlation between antigenic Purkinje cell bands revealed by mabQ113 and the organization of the olivocerebellar projection.J. Comp. Neurol. 265, 294–310.PubMedCrossRefGoogle Scholar
  19. Gravel C. and Hawkes R. (1990) Parasagittal organization of the rat cerebellar cortex: direct comparison of Purkinje cell compartments and the organization of the spinocerebellar projection.J. Comp. Neurol. 291, 79–102.PubMedCrossRefGoogle Scholar
  20. Greenberg J. M., Boehm T., Sofroniew M. V., Keynes R. J., Barton S. C., Norris M. L., Surani M. A., Spillantini M.-G., and Rabbits T. H. (1990) Segmental and developmental regulation of a presumptive T-cell oncogene in the central nervous system.Nature 344, 158–160.PubMedCrossRefGoogle Scholar
  21. Hallonet M. E. R., Teillet M.-A., and Le Douarin N. M. (1990) A new approach to the development of the cerebellum provided by the quail-chick marker system.Development 108, 19–31.PubMedGoogle Scholar
  22. Hawkes R. (1992) Antigenic markers of cerebellar modules in the adult mouse.Biochem. Soc. Trans. 20, 391–395.PubMedGoogle Scholar
  23. Hawkes R., Brochu G., Doré L., Gravel C., and Leclerc N. (1992) Zebrins: molecular markers of compartmentation in the cerebellum, inThe Cerebellum Revisited (Llinás R. and Sotelo C., eds.), Springer-Verlag, New York, pp. 22–55.Google Scholar
  24. Hawkes R., Colonnier M., and Leclerc N. (1985) Monoclonal antibodies reveal sagittal banding in the rodent cerebellar cortex.Brain Res. 333, 359–365.PubMedCrossRefGoogle Scholar
  25. Hawkes R. and Gravel C. (1991) The modular cerebellum.Prog. Neurobiol. 36, 309–327.PubMedCrossRefGoogle Scholar
  26. Hawkes R. and Leclerc N. (1987) Antigenic map of the rat cerebellar cortex: the distribution of parasagittal bands as revealed by monoclonal anti-Purkinje cell antibody mabQ113.J. Comp. Neurol. 256, 29–41.PubMedCrossRefGoogle Scholar
  27. Hawkes R. and Mascher C. (1994) The development of molecular compartmentation in the cerebellar cortex.Acta Anatom. 151, 139–149.Google Scholar
  28. Hawkes R. and Turner R. W. (1994) Compartmentation of NADPH-diaphorase activity in the mouse cerebellar cortex.J. Comp. Neurol. 346, 499–516.PubMedCrossRefGoogle Scholar
  29. Herrup K., Leclerc N., Drinkwater D., and Hawkes R. (1990) Purkinje cell lineage map is congruent to the antigenic map of zebrin II in the mouse cerebellum.20th Annual Meeting Soc. Neurosci. 16, 174.Google Scholar
  30. Ito M. (1984)The Cerebellum and Neural Control. Raven, New York.Google Scholar
  31. Jansen J. and Brodal A. (1940) Experimental studies on the intrinsic fibers of the cerebellum. II. The corticonuclear projection.J. Comp. Neurol. 73, 267–321.CrossRefGoogle Scholar
  32. Ji Z. and Hawkes R. (1994) Topography of Purkinje cell compartments and mossy fiber terminal fields in lobules II and III of the rat cerebellar cortex: spinocerebellar and cuneocerebellar projections.Neuroscience 61, 935–954.PubMedCrossRefGoogle Scholar
  33. Ji Z. and Hawkes R. (1995) Developing mossy fiber terminal fields in the rat cerebellar cortex may segregate because of Purkinje cell compartmentation and not competition.J. Comp. Neurol. 359, 197–212.PubMedCrossRefGoogle Scholar
  34. Kukita A., Mukai T., Miyata T., and Hori K. (1988) The structure of brain-specific rat aldolase C mRNA and the evolution of aldolase isozyme genes.Eur. J. Biochem. 171, 471–478.PubMedCrossRefGoogle Scholar
  35. Lannoo M. J., Brochu G., Maler L., and Hawkes R. (1991a) Zebrin II immunoreactivity in the rat and the weakly electric teleostEigenmannia (Gymnotiformes) reveals three modes of Purkinje cell development.J. Comp. Neurol. 310, 215–233.PubMedCrossRefGoogle Scholar
  36. Lannoo M. J., Ross L., Maler L., and Hawkes R. (1991b) Development of the cerebellum and its extracerebellar Purkinje cell projection in teleost fishes as determined by zebrin II immunocytochemistry.Prog. Neurobiol. 37, 329–363.PubMedCrossRefGoogle Scholar
  37. Leclerc N., Gravel C., and Hawkes R. (1988) Development of parasagittal zonation in the rat cerebellar cortex: mabQ113 antigenic bands are created postnatally by the suppression of antigen expression in a subset of Purkinje cells.J. Comp. Neurol. 273, 399–420.PubMedCrossRefGoogle Scholar
  38. Leclerc N., Schwarting G., Herrup K., Hawkes R., and Yamamoto M. (1992) Compartmentation in mammalian cerebellum: zebrin II and P-path antibodies define three classes of sagittally organized bands of Purkinje cells.Proc. Natl. Acad. Sci. USA 89, 5006–5010.PubMedCrossRefGoogle Scholar
  39. Lem J., Applebury M. L., Falk J. D., Flannery J. G., and Simon M. I. (1991) Tissue-specific and developmental regulation of rod opsin chimeric genes in transgenic mice.Neuron 6, 201–210.PubMedCrossRefGoogle Scholar
  40. Lewis S. A. and Cowan N. J. (1986) Analogous placement of introns in a member of the intermediate multigene family: an evolutionary conundrum.Mol. Cell Biol. 6, 1529–1534.PubMedGoogle Scholar
  41. Makeh I., Thomas M., Hardelin J. P., Briand P., Kahn A., and Skala H. (1994) Analysis of a brain-specific isozyme. Expression and chromatin structure of the rat aldolase C gene and transgenes.J. Biol. Chem. 269, 4194–4200.PubMedGoogle Scholar
  42. Marani E. (1982) Topographic enzyme histochemistry of the mammalian cerebellum: 5′-nucleotidase and acetylcholinesterase. Ph.D. Thesis, University of Leiden.Google Scholar
  43. Martinez S. and Alvarado-Mallart R. M. (1989) Rostral cerebellum originates from the caudal portion of the so-called “mesencephalic” vesicle: a study using chick/quail chimeras.Eur. J. Neurosci. 1, 549–560.PubMedCrossRefGoogle Scholar
  44. McCaffery P., Tempst P., Lana G., and Dräger U. (1991) Aldehyde dehydrogenase is a positional marker in the retina.Development 112, 693–702.PubMedGoogle Scholar
  45. Meek J., Hafmans T. G. M., Maler L., and Hawkes R. (1992) The distribution of zebrin II in the gigantocerebellum of the mormyrid fishGnathonemus petersii compared with other teleosts.J. Comp. Neurol. 316, 17–31.PubMedCrossRefGoogle Scholar
  46. Mukai T., Yatsuki H., Masuko S., Arai Y., Joh K., and Hori K. (1991) The structure of the brain-specific rat aldolase C gene and its regional expression.Biochem. Biophys. Res. Comm. 174, 1035–1042.PubMedCrossRefGoogle Scholar
  47. Oberdick J., Levinthal F., and Levinthal C. (1988) A Purkinje cell differentiation marker shows a partial DNA sequence homology to the cellularsis/PDGF2 gene.Neuron 1, 367–376.PubMedCrossRefGoogle Scholar
  48. Oberdick J., Schilling K., Smeyne R. J., Corbin J. G., Bocchiaro C., and Morgan J. I. (1993) Control of segment-like patterns of gene expression in the mouse cerebellum.Neuron 10, 1007–1018.PubMedCrossRefGoogle Scholar
  49. Oberdick J., Smeyne R. J., Mann J. R., Zackson S., and Morgan J. I. (1990) A promoter that drives transgene expression in cerebellar Purkinje and retinal bipolar neurons.Science 248, 223–248.PubMedCrossRefGoogle Scholar
  50. O’Reilly G. and Clarke F. (1993) Identification of an actin binding region in aldolase.FEBS Lett. 321, 69–72.PubMedCrossRefGoogle Scholar
  51. Paolella G., Buono P., Mancini F. P., Izzo P., and Salvatore F. (1986) Structure and expression of mouse aldolase genes. Brain-specific aldolase C amino acid sequence is closely related to aldolase A.Eur. J. Biochem. 156, 229–235.PubMedCrossRefGoogle Scholar
  52. Popovici T., Berwald N. Y., Vibert M., Kahn A., and Skala H. (1990) Localization of aldolase C mRNA in brain cells.FEBS Lett. 268, 189–193.PubMedCrossRefGoogle Scholar
  53. Rocchi M., Vitale E., Covone A., Romeo G., Santamaria R. T., Buono P., Paolella G., and Salvatore F. (1989) Assignment of human aldolase C gene to chromosome 17, region cen-q21.1.Hum. Genet. 82, 279–282.PubMedCrossRefGoogle Scholar
  54. Rottmann W. H., Deselms K. R., Niclas J., Camerato T., Holman P. S., Green C. J., and Tolan D. R. (1987) The complete amino acid sequence of the human aldolase C isozyme derived from genomic clones.Biochimie 69, 137–145.PubMedCrossRefGoogle Scholar
  55. Royds J. A., Ironside J. W., Warnaar S. O., Taylor C. B., and Timperley W. R. (1987) Monoclonal antibody to aldolase C: a selective marker for Purkinje cells in the human cerebellum.Neuropath. Appl. Neurobiol. 13, 11–21.Google Scholar
  56. Rubenstein J. L. and Puelles L. (1995) Homeobox gene expression during development of the vertebrate brain.Curr. Top. Devel. Biol. 29, 1–63.Google Scholar
  57. Scott T. G. (1963) A unique pattern of localization in the cerebellum.Nature 200, 793.PubMedCrossRefGoogle Scholar
  58. Scott T. G. (1964) A unique pattern of localization within the cerebellum of the mouse.J. Comp. Neurol. 122, 1–8.CrossRefGoogle Scholar
  59. Sauerwald A., Hoesche C., Oschwald R., and Kilimann M. W. (1990) The 5′ flanking region of the synapsin I gene.J. Biol. Chem. 265, 14,932–14,937.Google Scholar
  60. Sehgal A., Patil N., and Chao M. (1988) A constitutive promoter directs expression of the nerve growth factor receptor gene.Mol. Cell. Biol. 8, 3160–3167.PubMedGoogle Scholar
  61. Seil F. J., Johnson M. L., and Hawkes R. (1995) Molecular compartmentation expressed in cerebellar cultures in the absence of neuronal activity and neuron-glial interactions.J. Comp. Neurol. 356, 398–407.PubMedCrossRefGoogle Scholar
  62. Smeyne R. T., Oberdick J., Schilling K., Berrebi A. S., Mugnaini E., and Morgan J. I. (1991) Dynamic organization of developing Purkinje cells revealed by transgene expression.Science 254, 710–721.CrossRefGoogle Scholar
  63. Sotelo C. (1987) Cerebellar synaptogenesis and the organization of afferent projection maps.Pontif. Acad. Sci. Script. Var. 59, 65–90.Google Scholar
  64. Sotelo C., Bourrat F., and Triller A. (1984) Postnatal development of the inferior olivary complex in the rat. II. Topographic organization of the immature olivocerebellar projection.J. Comp. Neurol. 222, 177–199.PubMedCrossRefGoogle Scholar
  65. Sotelo C. and Wassef M. (1991) Purkinje cell heterogeneity in four cerebellar mutations revealed by zebrin I expression.Soc. Neurosci. Abstr. 17, 918.Google Scholar
  66. Tano D., Napieralski J. A., Eisenman L. M., Messer A., Plummer J., and Hawkes R. (1992) Novel developmental boundary in the cerebellum revealed by zebrin expression in theLurcher (Lc/ +) mutant mouse.J. Comp. Neurol. 323, 128–136.PubMedCrossRefGoogle Scholar
  67. Thomas M., Makeh I., Briand P., Kahn A., and Skala H. (1993) Determinants of the brain-specific expression of the rat aldolase C gene:ex vivo andin vivo analysis.Eur. J. Biochem. 218, 143–151.PubMedCrossRefGoogle Scholar
  68. Touri F., Hawkes R., and Riederer B. (1996) Differential distribution of Map 1a and aldolase c in adult mouse cerebellum.Eur. J. Neurosci., in press.Google Scholar
  69. Vandaele S., Nordquist D. T., Feddersen R. M., Tretjakoff I., Peterson A., and Orr H. T. (1991)Purkinje-cell-protein-2 regulatory regions and transgene expression in cerebellar compartments.Genes Devel. 5, 1136–1148.PubMedCrossRefGoogle Scholar
  70. Vibert M., Henry J., and Skala H. (1989) The brain-specific gene for rat aldolase C possesses an unusual housekeeping-type promoter.Eur. J. Biochem. 181, 33–39.PubMedCrossRefGoogle Scholar
  71. Voogd J. (1967) Comparative aspects of the structure and fibre connections of the mammalian cerebellum.Prog. Brain Res. 25, 94–135.PubMedCrossRefGoogle Scholar
  72. Voogd J. (1969) The importance of fiber connections in the comparative anatomy of the mammalian cerebellum, inNeurobiology of Cerebellar Evolution and Development (Llinás R., ed.), American Medical Association, Chicago, pp. 493–514.Google Scholar
  73. Wassef M., Angaut P., Arsenio-Nunes L., Bourrat F., and Sotelo C. (1992) Purkinje cell heterogeneity: its role in organizing the topography of the cerebellar cortex connections, inThe Cerebellum Revisited (Llinás R. and Sotelo C., eds.), Springer-Verlag, New York, pp. 5–21.Google Scholar
  74. Wassef M., Bally-Cuif L., and Alvarado-Mallart R. M. (1993) Regional specification during cerebellar development.Perspect. Dev. Neurobiol. 1, 127–132.PubMedGoogle Scholar
  75. Wassef M. and Sotelo C. (1984) Asynchrony in the expression of guanosine 3′:5′ phosphate dependent protein kinase by clusters of Purkinje cells during the perinatal development of rat cerebellum.Neuroscience 13, 1217–1241.PubMedCrossRefGoogle Scholar
  76. Wassef M., Sotelo C., Thomasset M., Granholm A.-C., Leclerc N., Rafrafi J., and Hawkes R. (1990) Expression of compartmentation antigen zebrin I in cerebellar transplants.J. Comp. Neurol. 294, 223–234.PubMedCrossRefGoogle Scholar
  77. Wassef M., Zanetta J. P., Brehier A., and Sotelo C. (1985) Transient biochemical compartmentalization of Purkinje cells during early cerebellar development.Dev. Biol. 111, 129–137.PubMedCrossRefGoogle Scholar
  78. Wilkinson D. G. (1993) Molecular mechanisms of segmental patterning in the vertebrate hindbrain and neural crest.BioEssays 15, 499–505.PubMedCrossRefGoogle Scholar
  79. Yan X. X., Yen L. S., and Garey L. J. (1993) Parasagittal patches in the granular layer of the developing and adult rat cerebellum as demonstrated by NADPH-diaphorase histochemistry.NeuroReport 4, 1227–1230.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1996

Authors and Affiliations

  • Richard Hawkes
    • 1
  • Karl Herrup
    • 2
  1. 1.Department of Anatomy and Neuroscience Research Group, Faculty of MedicineThe University of CalgaryCalgaryCanada
  2. 2.Alzheimer Research LaboratoryCase Western Reserve Medical SchoolCleveland

Personalised recommendations