Journal of Molecular Neuroscience

, Volume 5, Issue 3, pp 149–164 | Cite as

Localization of vesicular monoamine transporter isoforms (VMAT1 and VMAT2) to endocrine cells and neurons in rat

  • Eberhard Weihe
  • Martin K. -H. Schäfer
  • Jeffrey D. Erickson
  • Lee E. Eiden

Abstract

Polyclonal antipeptide antibodies have been raised against each of the two isoforms of the rat vesicular monoamine transporter, VMAT1 and VMAT2. Antibody specificity was determined by isoform-specific staining of monkey fibroblasts programmed to express either VMAT1 or VMAT2. The expression of VMAT1 and VMAT2 in the diffuse neuroendocrine system of the rat has been examined using these polyclonal antibodies specific for either VMAT1 or VMAT2.

VMAT1 is expressed exclusively in endocrine/paracrine cells associated with the intestine, stomach, and sympathetic nervous system. VMAT2 is expressed in neurons of the sympathetic nervous system, and aminergic neurons in the enteric and central nervous systems. VMAT2 is expressed in at least two endocrine cell populations in addition to its expression in neurons. A subpopulation of chromogranin A (CGA)-expressing chromaffin cells of the adrenal medulla also express VMAT2, and the oxyntic mucosa of the stomach contains a prominent population of CGA- and VMAT2-positive endocrine cells.

The expression of VMAT2 in neurons, and the mutually exclusive expression of VMAT1 and VMAT2 in endocrine/paracrine cell populations of stomach, intestine, and sympathetic nervous system may provide a marker for, and insight into, the ontogeny and monoamine-secreting capabilities of multiple neuroendocrine sublineages in the diffuse neuroendocrine system.

Index Entries

Vesicular monoamine transporter isoforms VMAT1 VMAT2 rat neuroendocrine system 

References

  1. Costa M., Furness J. B., and Llewellyn-Smith I. J. (1987) Histochemistry of the enteric nervous system, inPhysiology of the Gastrointestinal Tract, 2nd ed. (Johnson L. R., ed.), Raven, New York, pp. 1–41.Google Scholar
  2. Doupe A. J., Landis S. C., and Patterson P. H. (1985) Environmental influences in the development of neural crest derivatives: glucocorticoids, growth factors and chromaffin plasticity.J. Neurosci. 5, 2119–2142.PubMedGoogle Scholar
  3. Erickson J. D. and Eiden L. E. (1993) Functional identification and molecular cloning of a human brain vesicle monoamine transporter.J. Neurochem. 61, 2314–2317.PubMedCrossRefGoogle Scholar
  4. Erickson J. D., Eiden L. E., and Hoffman B. (1992) Expression cloning of a reserpine-sensitive vesicular monoamine transporter.Proc. Natl. Acad. Sci. USA 89, 10,993–10,997.CrossRefGoogle Scholar
  5. Fuerst T. R., Niles E. G., Studier F. W., and Moss B. (1986) Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase.Proc. Natl. Acad. Sci. USA 83, 8122–8126.PubMedCrossRefGoogle Scholar
  6. Gordon-Weeks P. R. (1988) The ultrastructure of nonadrenergic and cholinergic neurons in the autonomic nervous system, inHandbook of Chemical Neuroanatomy, vol. 6 (Björklund A., Hökfelt T., and Owman L., eds.), Elsevier, New York, pp. 114–142.Google Scholar
  7. Hoffman B. J. and Mezey E. (1993) Two different types of vesicular monoamine transporters (vMATs) are expressed in adrenal medulla.Soc. Neurosci. Abstr. 19, 4.Google Scholar
  8. Howell M., Shirvan A., Stern-Bach Y., Steiner-Mordoch S., Strasser J. E., Dean G. E., et al. (1994) Cloning and functional expression of a tetrabenazine sensitive vesicular monoamine transporter from bovine chromaffin granules.FEBS Lett. 338, 16–22.PubMedCrossRefGoogle Scholar
  9. Krejjci E., Gasnier B., Botton D., Isambert M.-F., Sagne C., Gagnon J., Massoulie J., et al. (1993) Expression and regulation of the bovine vesicular monoamine transporter gene.FEBS Lett. 335, 27–32.CrossRefGoogle Scholar
  10. Liu Y., Peter D., Roghani A., Schuldiner S., Prive G. G., Eisenberg D., Brecha N., et al. (1992) A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter.Cell 70, 539–551.PubMedCrossRefGoogle Scholar
  11. Mahata S. K., Mahata M., Fischer-Colbrie R., and Winkler H. (1993) Vesicle monoamine transporters 1 and 2: differential distribution and regulation of their mRNAs in chromaffin and ganglion cells of rat adrenal medulla.Neurosci. Lett. 156, 70–72.PubMedCrossRefGoogle Scholar
  12. Nirenberg M. J., Peter D., Edwards R. H., and Pickel V. M. (1994) Ultrastructural localization of the central vesicular monoamine transporter in the rat solitary tract nuclei.Soc. Neurosci. Abstr. 20, 924.Google Scholar
  13. Peter D., Jimenez J., Liu Y., Kim J., and Edwards R. H. (1994) The chromaffin granule and synaptic vesicle amine transporters differ in substrate recognition and sensitivity to inhibitors.J. Biol. Chem. 269, 7231–7237.PubMedGoogle Scholar
  14. Purcell W. M., Cohen D. L., and Hanahoe T. H. P. (1989) Comparison of histamine and 5-hydroxytryptamine content and secretion in rat mast cells isolated from different anatomical locations.Int. Arch. Allergy Appl. Immunol. 90, 382–386.PubMedGoogle Scholar
  15. Schäfer M. K.-H., Nohr D., Romeo H., Eiden L. E., and Weihe E. (1994) Pan-neuronal expression of chromogranin A in rat nervous system.Peptides 15, 263–279.PubMedCrossRefGoogle Scholar
  16. Schalling M., Seroogy K., Hokfelt T., Chai S. Y., Hallman H., Persson H., et al. (1988) Neuropeptide tyrosine in the rat adrenal gland—immunohistochemical andin situ hybridization studies.Neuroscience 24, 337–349.PubMedCrossRefGoogle Scholar
  17. Soll A. H., Lewin K. J., and Beaven M. A. (1981) Isolation of histamine containing cells from rat gastric mucosa: biochemical and morphologic differences from mast cells.Gastroenterology 80, 717–727.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 1995

Authors and Affiliations

  • Eberhard Weihe
    • 1
  • Martin K. -H. Schäfer
    • 1
  • Jeffrey D. Erickson
    • 2
  • Lee E. Eiden
    • 2
  1. 1.Department of Anatomy and Cell BiologyPhillips UniversityMarburgGermany
  2. 2.Section on Molecular Neuroscience, Laboratory of Cell BiologyNational Institute of Mental Health, National Institutes of HealthBethesda

Personalised recommendations