Advertisement

International Journal of Primatology

, Volume 17, Issue 6, pp 909–932 | Cite as

Jaw morphology and function in living and fossil old world monkeys

  • Matthew J. Ravosa
Article

Abstract

This allometric investigation on a sample of 29 cercopithecine and 22 colobine taxa augments the data and implications of prior work on subfamilial variation in mandibular form and function in recent Cercopithecidae. To increase the size range encompassed by living cercopithecines and colobines, I included many of the larger-bodied fossil specimens. These analyses serve to fill a gap in our understanding of size-related changes in masticatory function and symphyseal morphology and curvature in extant and extinct Old World monkeys. Results of subfamilial scaling comparisons indicate that for a given jaw length, colobines possess significantly more robust corpora and symphyses than those of cercopithecines, especially at smaller sizes. Following from previous work, the most plausible explanation for why the subfamilies differ in relative corporeal and symphyseal dimensions is that colobine mandibles experience elevated loads and greater repetitive loading during mastication due, on average, to processing a diet of tough leaves and/or seeds. Although colobines have relatively larger symphyses, subfamilial analyses of symphyseal curvature demonstrate that they evince less symphyseal curvature vis-à-vis cercopithecines of a common size. Moreover, both subfamilies exhibit similar allometric changes in the degree of curvature, such that larger-bodied Old World monkeys have more curved symphyses than those of smaller taxa. Subfamilial scaling analyses also indicate that colobines possess a shorter M2 bite-point length relative to masseter lever-arm length, but not versus temporalis lever-arm length. Thus, as compared to cercopithecines, colobines can recruit less masseter-muscle force to produce similar bite forces during mastication. In both clades, M2 bite-point length scales with positive allometry relative to masseter lever-arm length, such that larger species are less efficient at generating molar bite forces. This seems especially important due to the lack of subfamily difference in M2 bite-point:temporalis lever-arm scaling (which is isometric across cercopithecids). A consideration of extinct cercopithecids indicates that many of the large-bodied papionins have more robust corpora, due perhaps to a diet which was of similar toughness to that of extant and extinct colobines. However, the biomechanical arrangements of the masseter and temporalis in all but one fossil cercopithecine and all of the fossil colobine specimens are much as predicted for a subfamilial member of its skull size. That most large-bodied papionins with tougher diets nonetheless maintain a less efficient jaw-muscle configuration may be due to stronger offsetting selection for increased relative canine size and gape.

key words

skull form masticatory biomechanics allometry scaling fossils 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antón, S. C. (1996). Cranial adaptation to a high attrition diet in Japanese macaques.Int. J. Primatol. 17: 401–427.CrossRefGoogle Scholar
  2. Benefit, B. R., and McCrossin, M. L. (1990). Diet, species diversity and distribution of African fossil baboons.Kroeber Anthropol. Soc. Pap. 71/72: 77–93.Google Scholar
  3. Biknevicius, A. R., and Ruff, C. B. (1992). The structure of the mandibular corpus and its relationship to feeding behaviours in extant carnivorans.J. Zool. 228: 479–507.CrossRefGoogle Scholar
  4. Bouvier, M. (1986a). A biomechanical analysis of mandibular scaling in Old World monkeys.Am. J. Phys. Anthropol. 69: 473–482.CrossRefGoogle Scholar
  5. Bouvier, M. (1986b). Biomechanical scaling of mandibular dimensions in New World monkeys.Int. J. Primatol. 7: 551–567.CrossRefGoogle Scholar
  6. Bouvier, M., and Hylander, W.L. (1981). Effect of bone strain on cortical bone structure in macaques(Macaca mulatto).J. Morphol. 167: 1–12.PubMedCrossRefGoogle Scholar
  7. Cachel, S. M. (1984). Growth and allometry in primate masticatory muscles.Arch. Oral Biol. 29: 287–293.PubMedCrossRefGoogle Scholar
  8. Cole, T. M. (1992). Postnatal heterochrony of the masticatory apparatus inCebus apella andCebus albifrons.J. Hum. Evol. 23: 253–282.CrossRefGoogle Scholar
  9. Daegling, D. J. (1989). Biomechanics of cross-sectional size and shape in the hominoid mandibular corpus.Am. J. Phys. Anthropol. 80: 91–106.PubMedCrossRefGoogle Scholar
  10. Daegling, D. J. (1992). Mandibular morphology and diet in the genusCebus.Int. J. Primatol. 13: 545–570.CrossRefGoogle Scholar
  11. Daegling, D. J. (1993). Functional morphology of the human chin.Evol. Anthropol. 1: 170–177.CrossRefGoogle Scholar
  12. Daegling, D. J., Ravosa, M. J., Johnson, K. R., and Hylander, W. L. (1992). Influence of teeth, alveoli, and periodontal ligaments on torsional rigidity in human mandibles.Am. J. Phys. Anthropol. 89: 59–72.PubMedCrossRefGoogle Scholar
  13. Delson, E. (1975). Evolutionary history of the Cercopithecidae. In Szalay, F. S. (ed.),Approaches to Primate Paleobiology. Contributions to Primatology, Number 5, S. Karger, Basel, pp. 167–217.Google Scholar
  14. Delson, E., and Dean, D. (1993). ArePapio baringensis R. Leakey, 1969, andP. quadratirostris Iwamoto, 1982, species ofPapio orTheropithecus? In Jablonski, N. G. (ed.),Theropithecus: Rise and Fall of a Genus, Cambridge University Press, Cambridge, pp. 125–156.Google Scholar
  15. Demes, B., Preuschoft, H., and Wolff, J. E. A. (1984). Stress-strength relationships in the mandibles of hominoids. In Olivers, D. J., Wood, B. A., and Bilsborough, A. (eds.),Food Acquisition and Processing in Primates, Plenum Press, New York, pp. 369–390.Google Scholar
  16. Demment, M. W., and Soest, P. J. (1985). A nutritional explanation for body-size patterns of ruminant and non-ruminant herbivores.Am. Nat. 125: 641–647.CrossRefGoogle Scholar
  17. DuBrul, E. L. (1977). Early hominid feeding mechanisms.Am. J. Phys Anthropol. 47: 305–320.CrossRefGoogle Scholar
  18. Freeman, P. W. (1979). Specialized insectivory: Beetle-eating and moth-eating molossid bats.J. Mammal. 60: 467–479.CrossRefGoogle Scholar
  19. Freeman, P. W. (1981). Correspondence of food habits and morphology in insectivorous bats.J. Mammal. 62: 166–173.CrossRefGoogle Scholar
  20. Freeman, P. W. (1984). Functional cranial analysis of large animalivorous bats (Microchiroptera).Biol. J. Linn. Soc. 21: 387–408.Google Scholar
  21. Freeman, P. W. (1988). Frugivorous and animalivorous bats (Microchiroptera): Dental and cranial adaptations.Biol. J. Linn. Soc. 33: 249–272.Google Scholar
  22. Greaves, W. S. (1985). The generalized carnivore jaw.Zool. J. Linn. Soc. 85: 267–274.Google Scholar
  23. Happel, R. (1988). Seed-eating by West African cercopithecines, with reference to the possible evolution of bilophodont molars.Am. J. Phys Anthropol. 75: 303–327.PubMedCrossRefGoogle Scholar
  24. Hylander, W. L. (1975). Incisor size and diet in anthropoids with special reference to Cercopithecidae.Science 189: 1095–1098.PubMedCrossRefGoogle Scholar
  25. Hylander, W. L. (1979a). Mandibular function inGalago crassicaudatus andMacaca fascicularis: Anin vivo approach to stress analysis of the mandible.J. Morphol. 159: 253–296.PubMedCrossRefGoogle Scholar
  26. Hylander, W. L. (1979b). The functional significance of primate mandibular form.J. Morphol. 160: 223–240.PubMedCrossRefGoogle Scholar
  27. Hylander, W. L. (1981). Patterns of stress and strain in the macaque mandible. In Carlson, D. S. (ed.),Craniofacial Biology. Monograph 10, Craniofacial Growth Series, University of Michigan Press, Ann Arbor, pp. 1–37.Google Scholar
  28. Hylander, W. L. (1984). Stress and strain in the mandibular symphysis of primates: A test of competing hypotheses.Am. J. Phys. Anthropol. 64: 1–46.PubMedCrossRefGoogle Scholar
  29. Hylander, W. L. (1985). Mandibular function and biomechanical stress and scaling.Am. Zool. 25: 315–330.Google Scholar
  30. Hylander, W. L. (1988). Implications ofin vivo experiments for interpreting the functional significance of “robust” australopithecine jaws. In Grine, F. E. (ed.),Evolutionary History of the “Robust” Australopithecines, Aldine de Gruyter, New York, pp. 55–83.Google Scholar
  31. Hylander, W. L., and Johnson, K. R. (1985). Temporalis and masseter function during incision in humans and macaques.Int. J. Primatol. 6: 289–322.CrossRefGoogle Scholar
  32. Hylander, W. L., and Johnson, K. R. (1994). Jaw muscle function and wishboning of the mandible during mastication in macaques and baboons.Am. J. Phys. Anthropol. 94: 523–547.PubMedCrossRefGoogle Scholar
  33. Hylander, W. L., Johnson, K. R., and Crompton, A. W. (1987). Loading patterns and jaw movements during mastication inMacaca fascicularis: A bone-strain, electromyographic and cineradiographic analysis.Am. J. Phys. Anthropol. 72: 287–314.PubMedCrossRefGoogle Scholar
  34. Hylander, W. L., Johnson, K. R., and Crompton, A. W. (1992). Muscle force recruitment and biomechanical modeling: An analysis of masseter muscle function during mastication inMacaca fascicularis.Am. J. Phys. Anthropol. 88: 365–387.PubMedCrossRefGoogle Scholar
  35. Hylander, W. L., Johnson, K. R., Ravosa, M. J., and Ross, C. F. (1996). Mandibular bone-strain and jaw-muscle recruitment patterns during mastication in anthropoids and prosimians.Am. J. Phys. Anthropol. Suppl. 22: 128–129.Google Scholar
  36. Jablonski, N. G. (1993). Evolution of the masticatory apparatus inTheropithecus. In Jablonski, N.G. (ed.),Theropithecus: Rise and Fall of a Genus, Cambridge University Press, Cambridge, pp. 299–329.Google Scholar
  37. Janis, C. (1976). The evolutionary strategy of the Equidae and the origins of rumen and caecal digestion.Evolution 30: 757–774.CrossRefGoogle Scholar
  38. Jolly, C. J. (1970a). The large African monkeys as an adaptive array. In Napier, J. R., and Napier, P. H. (eds.),Old World Monkeys: Evolution, Systematics, and Behavior, Academic Press, New York, pp. 141–174.Google Scholar
  39. Jolly, C. J. (1970b). The seed-eaters: A new model of hominid differentiation based on a baboon analogy.Man 5: 5–28.CrossRefGoogle Scholar
  40. Kay, R. F. (1978). Molar structure and diet in extant Cercopithecidae. In Butler, P. M., and Joysey, K. A. (eds.),Development, Function and Evolution of Teeth, Academic Press, New York, pp. 309–339.Google Scholar
  41. Kay, R. F., and Hylander, W. L. (1978). The dental structure of mammalian folivores with special reference to Primates and Phalangeroidea (Marsupialia). In Montgomery, G. G. (ed.),The Ecobgy of Arboreal Folivores, Smithsonian Institution Press, Washington, DC, pp. 173–191.Google Scholar
  42. Lucas, P. W., and Teaford, M. F. (1994). Functional morphology of colobine teeth. In Davies, A. G., and Oates, J. F. (eds.),Colobine Monkeys: Their Ecology, Behaviour and Evolution, Cambridge University Press, Cambridge, pp. 173–203.Google Scholar
  43. Luschei, E. S., and Goodwin, G. M. (1974). Patterns of mandibular movement and jaw muscle activity during mastication in monkeys.J. Neurophysiol. 37: 954–966.PubMedGoogle Scholar
  44. McNaughton, S. J., and Georgiadis, N. J. (1986). Ecology of African grazing and browsing mammals.Annu. Rev. Ecol. Syst. 17: 39–65.CrossRefGoogle Scholar
  45. Pan, R., Peng, Y., Ye, Z., Wang, H., and Yu, F. (1995). Comparison of masticatory morphology betweenRhinopithecus bieti andR. roxellana.Am. J. Primatol. 35: 271–281.CrossRefGoogle Scholar
  46. Radinsky, L. R. (1981). Evolution of skull shape in carnivores. 1. Representative modern carnivores.Biol. J. Linn. Soc. 15: 369–388.Google Scholar
  47. Radinsky, L. R. (1984). Ontogeny and phytogeny in horse skull evolution.Evolution 38: 1–15.CrossRefGoogle Scholar
  48. Ravosa, M. J. (1988). Browridge development in Cercopithecidae: A test of two models.Am. J. Phys. Anthropol. 76: 535–555.CrossRefGoogle Scholar
  49. Ravosa, M. J. (1990). A functional assessment of subfamilial variation in maxillomandibular morphology among Old World monkeys.Am. J. Phys. Anthropol. 82: 199–212.PubMedCrossRefGoogle Scholar
  50. Ravosa, M. J. (1991a). Structural allometry of the mandibular corporus and symphysis in prosimian primates.J. Hum. Evol. 20: 3–20.CrossRefGoogle Scholar
  51. Ravosa, M. J. (1991b). The ontogeny of cranial sexual dimorphism in two Old World monkeys:Macaca fascicularis (Cercopithecinae) andNasalis larvatus (Colobinae).Int. J. Primatol. 12: 403–426.CrossRefGoogle Scholar
  52. Ravosa, M. J. (1992). Allometry and heterochrony in extant and extinct Malagasy primates.J. Hum. Evol. 23: 197–217.CrossRefGoogle Scholar
  53. Ravosa, M. J. (1996a). Mandibular form and function in North American and European Adapidae and Omomyidae.J. Morphol. 229: 171–190.PubMedCrossRefGoogle Scholar
  54. Ravosa, M. J. (1996b). Jaw scaling and biomechanics in fossil taxa.J. Hum. Evol. 30: 159–160.CrossRefGoogle Scholar
  55. Ravosa, M. J. (1996c). Experimental analysis of masticatory function in capuchin monkeys.Am. J. Phys. Anthropol. Suppl. 22: 194.Google Scholar
  56. Ravosa, M. J., and Hylander, W. L. (1994). Function and fusion of the mandibular symphysis in primates: Stiffness or strength? In Fleagle, J. G., and Kay, R. F. (eds.),Anthropoid Origins, Plenum Press, New York, pp. 447–468.Google Scholar
  57. Ravosa, M. J., and Profant, L. (1996). Evolutionary morphology of the skull in Old World monkeys. In Whitehead, P. F., and Jolly, C. J. (eds.),Old World Monkeys, Cambridge University Press, Cambridge, in press.Google Scholar
  58. Ravosa, M. J., and Ross, C. F. (1994). Craniodental allometry and heterochrony in two howler monkeys:Alouatta seniculus andA. palliata.Am. J. Primatol. 33: 277–299.CrossRefGoogle Scholar
  59. Ravosa, M. J., and Shea, B. T. (1994). Pattern in craniofacial biology: Evidence from the Old World monkeys (Cercopithecidae).Int. J. Primatol. 15: 801–822.Google Scholar
  60. Sailer, L. D., Gaulin, S. J. C., Boster, J. S., and Kurland, J. A. (1985). Measuring the relationship between dietary quality and body size in primates.Primates 26: 14–27.CrossRefGoogle Scholar
  61. Scapino, R. P. (1981). Morphological investigation into functions of the jaw symphysis in carnivorans.J. Morphol. 167: 339–375.PubMedCrossRefGoogle Scholar
  62. Shea, B. T. (1983). Size and diet in the evolution of African ape craniodental form.Folia Primatol. 40: 32–68.PubMedGoogle Scholar
  63. Shea, B. T., Hammer, R. E., Brinster, R. L., and Ravosa, M. J. (1990). Relative growth of the skull and postcranium in giant transgenic mice.Genet. Res. 56: 21–34.PubMedCrossRefGoogle Scholar
  64. Spencer, L. M. (1995). Morphological correlates of dietary resource partitioning in the African Bovidae.J. Mammal. 76: 448–471.CrossRefGoogle Scholar
  65. Takahashi, L. K., and Pan, R. (1994). Mandibular morphometrics among macaques: The case ofMacaca thibetana.Int. J. Primatol. 15: 597–621.CrossRefGoogle Scholar
  66. Tattersall, I. (1973). Cranial anatomy of the Archaeolemurinae (Lemuroidea, Primates).Anthropol. Pap. Am. Mus. Nat. Hist 52: 1–110.Google Scholar
  67. Teaford, M. F. (1993). Dental microwear and diet in extant and extinctTheropithecus: Preliminary analyses. In Jablonski, N. G. (ed.),Theropithecus: Rise and Fall of a Genus, Cambridge University, Cambridge, pp. 331–349.Google Scholar
  68. Vinyard, C. J. (1996). Ontogeny, function and scaling in the macaque mandibular symphysis.Am. J. Phys. Anthropol. Suppl. 22: 235–236.Google Scholar
  69. Walker, P., and Murray, P. (1975). An assessment of masticatory efficiency in a series of anthropoid primates with special reference to the Colobinae and Cercopithecinae. In Tuttle, R. H. (ed.),Functional Morphology and Evolution, Mouton, Paris, pp. 135–150.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Matthew J. Ravosa
    • 1
    • 2
  1. 1.Department of Cell and Molecular BiologyNorthwestern University Medical SchoolChicago
  2. 2.Department of ZoologyDivision of Mammals, Field Museum of Natural HistoryChicago

Personalised recommendations