Spatial autocorrelation, phylogenetic constraints, and the causes of sexual dimorphism in primates

  • John Ely
  • Jeffrey A. Kurland


Cheverud et al. (1985) apply the important and relatively new methodology of spatial autocorrelation to the quantification of phylogenetic constraints on adaptation and illustrate the use of these methods in an allometric study of sexual dimorphism in body size among extant nonhuman primates. Though of potentially broad applicability, the technique was completely overlooked in a recent review of methods to control for the effects of common descent in comparative studies (Bell, 1989). Their approach therefore deserves a wider recognition. However, their specific conclusion, that phytogeny is the primary determinant of patterns of sexual dimorphism among primates, has been uncritically accepted. We present four main methodological problems with their approach that should temper the interpretation of their analysis: biased phylogenetic relatedness scores, biased sample selection, size dependence in sex dimorphism measurement, and deficiencies in selection of a structural path model. We conclude that, even in terms of the analysis by Cheverud and co-workers (1985), phylogenetic inertia is not the primary reason for body size dimorphism.

Key words

comparative methods path analysis phylogenetic constraint sexual dimorphism spatial autocorrelation 


  1. Atchley, W., Gaskins, C., and Anderson, D. (1976). Statistical properties of ratios. I. Empirical results.Syst. Zool. 25: 137–148.CrossRefGoogle Scholar
  2. Austad, S. N. (1987). Review of Rubenstein, D. I., and Wrangham, R. W. (eds.),Ecological Aspects of Social Evolution. Science 236: 470.Google Scholar
  3. Barnett, V., and Lewis, T. (1978).Outliers In Statistical Data, Wiley, New York.Google Scholar
  4. Bell, G. (1989). A comparative method.Am. Nat. 133: 553–571.CrossRefGoogle Scholar
  5. Bell, R. H. V. (1969). The use of the herb layer by grazing ungulates in the Serengeti. In Watson, A. (ed.),Animal Resources in Relation to their Food Resources, Blackwell, Oxford, pp. 11–128.Google Scholar
  6. Bernstein, I. S., and Gordon, T. P. (1980). Mixed taxa introductions, hybrids, and macaque systematics. In Lindburg, D.G. (ed.),The Macaques: Studies in Ecology, Behavior and Evolution, Van Nostrand Reinhold, New York, pp. 125–147.Google Scholar
  7. Birnbaum, I. (1981).An Introduction to Causal Analysis in Sociology, Macmillan, London.Google Scholar
  8. Blalock, H. M. (1964).Causal Inference in Nonexperimental Research, University of North Carolina Press, Chapel Hill.Google Scholar
  9. Brockelman, W. Y., and Gittins, S. P. (1984). Natural hybridization in theHylobates lar species group: Implications for speciation in gibbons. In Preuschoft, H., Chivers, D. J., Brockelman, W. Y., and Creel, N. (eds.),The Lesser Apes, Edinburgh University Press, Edinburgh, pp. 291–297.Google Scholar
  10. Cheverud, J. M., Dow, M. M., and Leutenegger, W. (1985). A quantitative model of phylogenetic constraints in comparative analyses: Sexual dimorphism in body weight among primates.Evolution 39: 1335–1351.CrossRefGoogle Scholar
  11. Cheverud, J. M., Dow, M. M., and Leutenegger, W. (1986). A phylogenetic autocorrelation analysis of sexual dimorphism in primatesAm. Anthropol. 88: 916–922.CrossRefGoogle Scholar
  12. Chiarelli, B. (1973). Checklist of catarrhine primate hybrids.J. Hum. Evol. 4: 301–305.CrossRefGoogle Scholar
  13. Cliff, A. D., and Ord, J. K. (1981).Spatial Autocorrelation, Pion, London.Google Scholar
  14. Clutton-Brock, T. H., and Harvey, P. (1977a). Primate ecology and social organization.J. Zool. 183: 1–39.Google Scholar
  15. Clutton-Brock, T., and Harvey, P. (1977b). Species differences in feeding and ranging behavior in primates. In Clutton-Brock, T. H. (ed.),Primate Ecology: Studies of Feeding and Ranging Behavior in Lemurs, Monkeys, and Apes, Academic Press, New York, pp. 557–584.Google Scholar
  16. Clutton-Brock, T., and Harvey, P. (1978). Mammals, resources and reproductive strategies.Nature (273): 191–195.PubMedCrossRefGoogle Scholar
  17. Clutton-Brock, T., and Harvey, P. (1980). Primates, brains and ecology.J. Ecol. 190: 309–323.Google Scholar
  18. Clutton-Brock, T., Harvey, P., and Rudder, P. (1977). Sexual dimorphism, socionomic sex ratio, and body weight in primates.Nature 269: 797–800.PubMedCrossRefGoogle Scholar
  19. Corruccini, R. S. (1975). Multivariate analysis in biological anthropology: Some considerations.J. Hum. Evol. 4: 1–19.CrossRefGoogle Scholar
  20. d’Agostino, R. B., and Tietjen, G. L. (1973). Approaches to the null distribution of b1.Biometrika 60: 169–173.Google Scholar
  21. Dow, M., Burton, M., and White, D. (1982). Network autocorrelation: A simulation study of a foundational problem in regression and survey research.soci. Networks 4: 169–200.CrossRefGoogle Scholar
  22. Draper, N. R., and Smith, H. (1981).Applied Regression Analysis, Wiley, New York.Google Scholar
  23. Duncan, O. D. (1970). Partials, partitions, and paths. In Borgatta, E. F., and Bohrnstedt, G. W. (eds.),Sociological Methodology, 1970, Jossey-Bass, San Francisco, pp. 38–47.Google Scholar
  24. Duncan, O. D. (1975).Introduction to Structural Equation Models, Academic Press, New York.Google Scholar
  25. Felsenstein, J. (1985). Phylogenies and the comparative method,Am. Nat. (125): 1–15.CrossRefGoogle Scholar
  26. Gaulin, S. J. C. (1979). A Jarman-Bell model of primate feeding niches.Hum. Ecol. 7: 1–20.CrossRefGoogle Scholar
  27. Gaulin, S. J. C., and Sailer, L. D. (1984). Sexual dimorphism in weight among the primates: The relative impact of allometry and sexual selection.Int. J. Primatol. 5: 515–535.CrossRefGoogle Scholar
  28. Gaulin, S. J. C., and Sailer, L. D. (1985). Are females the ecological sex?Am. Anthropol. 87: 111–119.CrossRefGoogle Scholar
  29. Goodman, M., Romero-Herrera, A. E., Dene, H., Czelusniak, J., and Tashian, R.E. (1982). Amino acid sequence evidence on the phylogeny of primates and other eutherians. In Goodman, M. (ed.)Macromolecular Sequences in Systematic and Evolutionary Biology, Plenum Press, New York, pp. 115–191.Google Scholar
  30. Gould, S. J. (1966). Allometry and size in ontogeny and phylogeny.Biol. Rev. 41: 587–640.PubMedGoogle Scholar
  31. Groves, C. P. (1984). A new look at the taxonomy and phylogeny of the gibbons. In Preuschoft, H., Chivers, D. J., Brockelman, W. Y., and Creel, N. (eds.),The Lesser Apes, Edinburgh University Press, Edinburgh, pp. 542–561.Google Scholar
  32. Harvey, P. H., Kavanagh, M., and Clutton-Brock, T. H. (1978). Sexual dimorphism in primate teeth.J. Zool. 186: 475–485.CrossRefGoogle Scholar
  33. Jarman, P. J. (1974). The social organization of antelope in relation to their ecology.Behavior 48: 215–267.Google Scholar
  34. Johnson, N. L., and Kotz, S. (1972).Continuous Multivariate Distributions. Wiley, New York.Google Scholar
  35. Joysey, K. A. (1981). Molecular evolution and vertebrate phylogeny in perspective.Symp. Zool. Soc. Lond. 46: 189–218.Google Scholar
  36. Jungers, W. L., and Sussman, R. L. (1984). Body size and skeletal allometry in African apes. In Sussman, R. L. (ed.),The Pygmy Chimpanzee, Plenum Press, New York, pp. 131–177.Google Scholar
  37. Kendall, M. G., and Buckland, W. R. (1982).A Dictionary of Statistical Terms, 4th ed., Longman, New York.Google Scholar
  38. Kohne, D. E. (1975). DNA evolution data and its relevance to mammalian phylogeny. In Luckett, W. P., and Szalay, F. S. (eds.),Phylogeny of the Primates, Plenum Press, New York, pp. 249–261.Google Scholar
  39. Kruskal, W. (1987). Relative importance by averaging over orderings.Am. Stat. 41: 6–10.CrossRefGoogle Scholar
  40. Lernould, J.-M. (1988). Classification and geographical distribution of guenons: A review. In Gautier-Hion, A., Bourliere, F., Gautier, J.-P., and Kingdon, J. (eds.),A Primate Radiation, Cambridge University Press, New York, pp. 54–78.Google Scholar
  41. Leutenegger, W. (1980). Monogamy in callitrichids: A consequence of phyletic dwarfism?Int. J. Primatol. 1: 95–98.CrossRefGoogle Scholar
  42. Leutenegger, W., and Cheverud, J. (1982). Correlates of sexual dimorphism in Primates: Ecological and size variables.Int. J. Primatol. 3:387–402.CrossRefGoogle Scholar
  43. Leutenegger, W., and Cheverud, J. M. (1985). Sexual dimorphism in primates: The effects of size. In Jungers, W. L. (ed.),Size and Scaling in Primate Biology, Plenum Press, New York, pp. 33–50.Google Scholar
  44. Li, C. C. (1975).Path Analysis, Boxwood Press, Pacific Grove, Calif.Google Scholar
  45. Marsaglia, G. (1965). Ratios of normal variables and ratios of sums of uniform variables.J. Am. Stat. Soc. 60: 193–204.Google Scholar
  46. Moller, A. P. (1988). Ejaculate quality, testes size and sperm competition in primates.J. Hum. Evol. 17: 479–488.CrossRefGoogle Scholar
  47. Mosimann, J. E., and James, F. C. (1979). New statistical methods for allometry with application to Florida red-winged blackbirds.Evolution 33: 444–459.CrossRefGoogle Scholar
  48. Mosteller, F., and Tukey, J. W. (1977).Data Analysis and Regression, Addison-Wesley, Reading, Mass.Google Scholar
  49. Nagel, U. (1973). A comparison of anubis baboons, hamadryas baboons and their hybrids at a species border in Ethiopia.Folia Primatol. 19: 104–165.PubMedCrossRefGoogle Scholar
  50. Pagel, M. D., and Harvey, P. H. (1988). Recent developments in the analysis of comparative data.Q. Rev. Biol. 63: 413–440.PubMedCrossRefGoogle Scholar
  51. Pearson, K. (1897). On a form of spurious correlation which may arise when indices are used in the measurement of organs.Proc. Roy. Soc. Lond. 60: 489–498.CrossRefGoogle Scholar
  52. Ridley, M. (1983).The Explanation of Organic Diversity, Oxford Univesity Press, New York.Google Scholar
  53. Ripley, S. (1984). Enviromental grain, niche diversification and feeding behavior. In Chivers, D. J., Wood, B. A., and Bilsborough, A. (eds.),Food Acquisition and Processing In Primates, Plenum Press, New York, pp. 33–72.Google Scholar
  54. Rodman, P. S., and Mitani, J. C. (1987). Orangutans: Sexual dimorphism in a solitary species. In Smuts, B., Wrangham, R., Cheney, D., Seyfarth, R., and Struhsaker, T. (eds.),Primate Societies, University of Chicago Press, Chicago.Google Scholar
  55. Sokal, R. R., and Rohlf, F. J. (1981).Biometry, 2nd ed., W. H. Freeman, New York.Google Scholar
  56. Yule, G. U. (1910). On the interpretation of correlations between indices or ratios.J. Roy. Stat. Soc. Lond. Ser. A 73: 645–647.Google Scholar
  57. Yule, G. U., and Kendall, M. G. (1940).An Introduction to the Theory of Statistics, 12th ed., Charles Griffin, London.Google Scholar
  58. Wright, S. (1921). Correlation and causation.J. Agr. Res. 20: 557–585.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • John Ely
    • 1
  • Jeffrey A. Kurland
    • 2
  1. 1.Department of Human GeneticsGraduate School of Public Health, University of PittsburghPittsburgh
  2. 2.Department of AnthropologyThe Pennsylvania State UniversityPennsylvania

Personalised recommendations