Metallurgical and Materials Transactions B

, Volume 37, Issue 6, pp 879–885 | Cite as

Computational modeling of mold filling and related free-surface flows in shape casting: An overview of the challenges involved

  • M. Cross
  • D. McBride
  • T. N. Croft
  • A. J. Williams
  • K. Pericleous
  • J. A. Lawrence

Abstract

Accurate representation of the coupled effects between turbulent fluid flow with a free surface, heat transfer, solidification, and mold deformation has been shown to be necessary for the realistic prediction of several defects in castings and also for determining the final crystalline structure. A core component of the computational modeling of casting processes involves mold filling, which is the most computationally intensive aspect of casting simulation at the continuum level. Considering the complex geometries involved in shape casting, the evolution of the free surface, gas entrapment, and the entrainment of oxide layers into the casting make this a very challenging task in every respect. Despite well over 30 years of effort in developing algorithms, this is by no means a closed subject. In this article, we will review the full range of computational methods used, from unstructured finite-element (FE) and finite-volume (FV) methods through fully structured and block-structured approaches utilizing the cut-cell family of techniques to capture the geometric complexity inherent in shape casting. This discussion will include the challenges of generating rapid solutions on high-performance parallel cluster technology and how mold filling links in with the full spectrum of physics involved in shape casting. Finally, some indications as to novel techniques emerging now that can address genuinely arbitrarily complex geometries are briefly outlined and their advantages and disadvantages are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.C. Campbell: Castings, 2nd ed., Butterworth-Heinemann, Oxford, United Kingdom, 2003.CrossRefGoogle Scholar
  2. 2.
    D.Z. Li, J. Campbell, and Y.Y. Li: J. Mater. Proc. Technol., 2004, vol. 148, pp. 310–16.CrossRefGoogle Scholar
  3. 3.
    Modeling of Casting, Welding and Advanced Solidification Processes (MCWASP I), T.S. Piwonka, ed., TMS, Warrendale, PA, 1980.Google Scholar
  4. 4.
    MCWASP II, J.A. Dantzig and J.T. Berry, eds., TMS, Warrendale, PA, 1983.Google Scholar
  5. 5.
    MCWASP III, S. Kou and R. Mehrabian, eds., TMS, Warrendale, PA, 1986.Google Scholar
  6. 6.
    MCWASP IV, A.F. Giamei and G.J. Abbashcian, eds., TMS, Warrendale, PA, 1988.Google Scholar
  7. 7.
    MCWASP V, M. Rappaz, M.R. Ozgu, and K.W. Mahin, eds., TMS, Warrendale, PA, 1991.Google Scholar
  8. 8.
    MCWASP VI, T.S. Piwonka, V. Voller, and L. Katgerman, eds., TMS, Warrendale, PA, 1993.Google Scholar
  9. 9.
    MCWASP VII, M. Cross and J. Campbell, eds., TMS, Warrendale, PA, 1995.Google Scholar
  10. 10.
    MCWASP VIII, B.G. Thomas and C. Beckermann, eds., TMS, Warrendale, PA, 1998.Google Scholar
  11. 11.
    MCWASP IX, P.R. Sahm, P.N. Hansen, and J.G. Canley, eds., Śhaker-Verlag, Aachen, Germany, 2000.Google Scholar
  12. 12.
    MCWASP X, D.M. Stefanescu, J.A. Warren, M.R. Jolly, and M.J.M. Krane, eds., TMS, Warrendale, PA, 2003.Google Scholar
  13. 13.
    D. Kothe, D. Juric, K. Lam, and B. Lally: in MCWASP VIII, B.G. Thomas and C. Beckermann, eds., TMS, Warrendale, PA, 1998, pp. 17–28.Google Scholar
  14. 14.
    F.H. Harlow and J.E. Welch: Phys. Fluids, 1966, vol. 9, pp. 842–51.CrossRefGoogle Scholar
  15. 15.
    K. Zaidi, B. Abbes, and C. Teodosiu: Comp. Methods Appl. Mech. Eng., 1997, vol. 144, pp. 227–33.CrossRefGoogle Scholar
  16. 16.
    M. Bellet and V.D. Fachinotti: Comp. Methods Appl. Mech. Eng., 2004, vol. 193, pp. 4355–81.CrossRefGoogle Scholar
  17. 17.
    C.W. Hirt and B.D. Nichols: J. Comp. Phys., 1981, vol. 39, pp. 201–25.CrossRefGoogle Scholar
  18. 18.
    B. van Leer: J. Comput. Phys., 1979, vol. 23, pp. 276–99.Google Scholar
  19. 19.
    A.S. Usmani, J.T. Cross, and R.W. Lewis: Int. J. Num. Methods Eng., 1992, vol. 35, pp. 787–806.CrossRefGoogle Scholar
  20. 20.
    A.S. Usmani, J.T. Cross, and R.W. Lewis: J. Mater. Proc. Technol., 1993, vol. 38, pp. 291–302.CrossRefGoogle Scholar
  21. 21.
    T.E. Tezduyar and S. Aliabadi: Comp. Methods Appl. Mech. Eng., 2000, vol. 190, pp. 403–10.CrossRefGoogle Scholar
  22. 22.
    T.E. Tezduyar, S. Aliabadi, and M. Behr: Comp. Methods Appl. Mech. Eng., 1998, vol. 155, pp. 235–48.CrossRefGoogle Scholar
  23. 23.
    K. Pericleous: Appl. Math. Modelling, 1998, vol. 22, pp. 895–906.CrossRefGoogle Scholar
  24. 24.
    D.B. Spalding: Report No. HTS-80-1, Mechanical Engineering Department, Imperial College, London, 1980.Google Scholar
  25. 25.
    J.B. Ramshaw and J.A. Trapp: J. Computat. Phys., 1976, vol. 21, pp. 438–53.CrossRefGoogle Scholar
  26. 26.
    C.W. Hirt: J. Wind Eng. Ind. Aero., 1993, vols. 46–47, pp. 327–38.CrossRefGoogle Scholar
  27. 27.
    P. Chow and M. Cross: Int. J. Num. Methods Eng., 1992, vol. 35, pp. 1849–70.CrossRefGoogle Scholar
  28. 28.
    T.N. Croft, K. Pericleous, and M. Cross: Numerical Methods Laminar and Turbulent Flow’95, C. Taylor and P. Durbetaki, 1995, vol. IX, pp. 1269–80.Google Scholar
  29. 29.
    D.M. Waite and M.T. Samonds: in Modeling of Casting, Welding and Advanced Solidification Processes, T.S. Piwonka, V. Voller, and L. Katgerman, eds., TMS, Warrendale, PA, 1993, vol. VI, pp. 357–64.Google Scholar
  30. 30.
    M. Samonds and D. Waite: in Mathematical Modelling for Materials Processing, M. Cross, J.F.T. Pittman, and R.D. Wood, eds., Clarendon Press, Oxford, United Kingdom, pp. 283–300.Google Scholar
  31. 31.
    MAGMASOFT, www.magmasoft.comGoogle Scholar
  32. 32.
    S.V. Patankar: Numerical Heat Transfer and Fluid Flow, Hemisphere, Taylor & Francis Group, New York, NY, 1980.Google Scholar
  33. 33.
    H.K. Versteeg and W. Malalasekera: An Introduction to Computational Fluid Dynamics, Longmans, New York, NY, 1995.Google Scholar
  34. 34.
    M. Lipinski: Ph.D. Thesis, Rheinisch-Westfalischen Technischen Hochschule, Aachen, Germany, 1996 (in English).Google Scholar
  35. 35.
    PROCAST, www.esi-group.comGoogle Scholar
  36. 36.
    FLOW3D, www.flow3d.comGoogle Scholar
  37. 37.
    PHYSICA, www.multi-physics.comGoogle Scholar
  38. 38.
    K. McManus, A. Williams, M. Cross, N. Croft, and C. Walshaw: Int. J. High Performance Computing Applications, 2005, vol. 19, pp. 1–27.CrossRefGoogle Scholar
  39. 39.
    THERCAST, www.transvalor.comGoogle Scholar
  40. 40.
    I. Ohnaka: MCWASP X, D.M. Stefanescu, J.A. Warren, M.R. Jolly, and M.J.M. Krane, eds., TMS, Warrendale, PA, 2003, pp. 403–14.Google Scholar
  41. 41.
    Osaka University Group, www.mpd.ams.eng.osaka-u.ac.jp/index.htmlGoogle Scholar
  42. 42.
    CFX, www.ansys.comGoogle Scholar
  43. 43.
    FLUENT, www.fluent.comGoogle Scholar
  44. 44.
    C.M. Rhie and W.L. Chow: AIAA J., 1982, vol. 21, pp. 1527–32.Google Scholar
  45. 45.
    D. McBride, T.N. Croft, and M. Cross: Proc. 3rd Int. Conf. on CFD in Minerals and Process Industries, CSIRO, Melbourne, Australia, 2003, pp. 351–56.Google Scholar
  46. 46.
    D. McBride: Ph.D. Thesis, University of Greenwich, London, 2003.Google Scholar
  47. 47.
    D. McBride, M. Cross, and T.N. Croft: “Vertex Based Free Surface Flows with Applications,” unpublished research.Google Scholar
  48. 48.
    J. Campbell: in MCWASP X, D.M. Stefanescu, J.A. Warren, M.R. Jolly, and M.J.M. Krane, eds., TMS, Warrendale, PA, 2003, pp. 209–20.Google Scholar
  49. 49.
    N.W. Lai, W.D. Griffiths, and J. Campbell: in MCWASP X, D.M. Stefanescu, J.A. Warren, M.R. Jolly, and M.J.M. Krane, eds., TMS, Warrendale, PA, 2003, pp. 415–22.Google Scholar
  50. 50.
    A. Kimatsuka, I. Ohnaka, J.D. Zhu, A. Sugiyama, and T. Kamitsu: in MCWASP X, D.M. Stefanescu, J.A. Warren, M.R. Jolly, and M.J.M. Krane, eds., TMS, Warrendale, PA, 2003, pp. 335–42.Google Scholar
  51. 51.
    H. Zhao, I. Ohnaka, Y. Sako, H. Onda, J. Zhu, and H. Yasuda: Proc. 65th World Foundry Congr., Gyeongju, Korea, 2002, pp. 749–54.Google Scholar
  52. 52.
    G.J. Moran, S.M. Bounds, K.A. Pericleous, and M. Cross: in MCWASP VIII, B.G. Thomas and C. Beckermann, eds., TMS, Warrendale, PA, 1998, pp. 101–08.Google Scholar
  53. 53.
    S. Bounds, G. Moran, K.A. Pericleous, M. Cross, and T.N. Croft: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 515–27.CrossRefGoogle Scholar
  54. 54.
    J. Lawrence: Ph.D. Thesis, University of Greenwich, London, 2004.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society - ASM International - The Materials Information Society 2006

Authors and Affiliations

  • M. Cross
    • 1
  • D. McBride
    • 1
  • T. N. Croft
    • 1
  • A. J. Williams
    • 1
  • K. Pericleous
    • 2
  • J. A. Lawrence
    • 3
  1. 1.the School of EngineeringUniversity of Wales SwanseaSwanseaUnited Kingdom
  2. 2.the Centre for Numerical Modelling and Process AnalysisUniversity of Greenwich, Old Royal Naval CollegeLondonUnited Kingdom
  3. 3.the Centre for Numerical Modelling and Process AnalysisUniversity of Greenwich, Old Royal Naval CollegeUK

Personalised recommendations