Estuaries

, Volume 28, Issue 5, pp 726–749

A review of the causes, effects, and potential management of harmful brown tide blooms caused byAureococcus anophagefferens (Hargraves et sieburth)

Article

Abstract

Brown tides caused by the harmful algaAureococcus anophagefferens abruptly appeared in some coastal embayments of the northeastern United States (Rhode Island, New York) in 1985. Since then, brown tides have vanished from some bays, chronically reoccurred in others, and recently have exhibited an apparent southern expansion into new regions (e.g., New Jersey, Delaware, Maryland, and Virginia). Brown tides have also recently been detected across the Atlantic Ocean in South Africa. Although blooms ofA. anophagefferens have no known direct, negative effects on human health, they are considered harmful because of their detrimental effects on estuarine organisms, such as suspension feeders (scallops and hard clams) and submerged aquatic vegetation. The selective effect of blooms on pelagic grazers (zooplankton and shellfish) is likely to affect food webs and biodiversity within affected ecosystems. Recent findings indicate brown tides occur in shallow estuaries with long residence times and high salinities (> 25‰). These estuarine characteristics may foster the accumulation of algal biomass and a nutrient environment (high dissolved organic matter and low dissolved in organic nitrogen) as well as a low light regime that encourages rapid cellular growth ofA. anophagefferens. A lack of sufficient grazing control by benthic and pelagic suspension feeders during the initiation phase of blooms is also implicated in brown tide development.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Andersen, R. A., G. W. Saunders, M. P. Paskind, andJ. P. Sexton. 1993. Ultrastructure and 18S′ rRNA gene sequence forPelagomonas calceolata gen. et sp. nov. and the description of a new algal class, thePelagophyceae classis nov.Journal of Phycology 29:701–715.CrossRefGoogle Scholar
  2. Anderson, D. M., P. M. Glibert, andJ. M. Burkholder. 2002. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences.Estuaries 25:704–726.CrossRefGoogle Scholar
  3. Anderson, D. M., B. A. Keafer, D. M. Kulis, R. M. Waters, andR. Nuzzi. 1993. An immunofluorescent survey of the brown tide chrysophyteAureococcus anophagefferens along the northeast coast of the United States.Journal of Plankton Research 15:563–580.CrossRefGoogle Scholar
  4. Anderson, D. M., D. M. Kulis, C. M. Cetta, andE. M. Cosper. 1989. Immunofluorescent detection of the brown tide organism,Aureococcus anophagefferens p. 213–228.In E. M. Cosper, V. M. Bricelj, and E. J. Carpenter (eds.), Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms, Volume 35. Springer, New York.Google Scholar
  5. Anderson, T. R. andD. W. Pond. 2000. Stoichiometric theory extended to micronutrients: Comparison of the roles of essential fatty acids, carbon, and nitrogen in the nutrition of marine copepods.Limnology and Oceanography 45:1162–1167.Google Scholar
  6. Antia, N. J., D. J. Berland, andS. Y. Maestrini. 1975. Comparative evaluation of certain organic and inorganic sources for growth of marine microalgae.Journal Marine Biological Association, UK 55:519–539.CrossRefGoogle Scholar
  7. Archambault, M.-C., V. M. Bricelj, J. Grant, andD. M. Anderson. 2004. Effects of suspended and sedimented clays on juvenile hard clams,Mercenaria mercenaria, within the context of harmful algal bloom mitigation.Marine Biology 144:553–565.CrossRefGoogle Scholar
  8. Bailey, C. J. andR. A. Andersen. 1999. Analysis of clonal cultures of the brown tide algaeAureococcus andAureoumbra (Pelagophyceae) using 18S rRNA, rbcL and RUBISCO spacer sequences.Journal of Phycology 35:570–574.CrossRefGoogle Scholar
  9. Berg, G. M., P. M. Glibert, M. W. Lomas, andM. A. Burford. 1997. Organic nitrogen uptake and growth by the chrysophyteAureococcus anophagefferens during a brown tide event.Marine Biology 129:377–387.CrossRefGoogle Scholar
  10. Berg, G. M., D. J. Repeta, andJ. LaRoche. 2002. Dissolved organic nitrogen hydrolysis rates in axenic cultures ofAureococcus anophagefferens (Pelagophyceae): Comparison with heterotrophic bacteria.Applied and Environmental Microbiology 68:401–404.CrossRefGoogle Scholar
  11. Bidigare, R. R. 1989. Photosynthetic pigment composition of the brown tide alga: Unique chlorophyll and carotenoid derivatives, p. 57–75.In E. M. Cosper, V. M. Bricelj, and E. J. Carpenter (eds.), Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms, Volume 35. Springer, New York.Google Scholar
  12. Billen, G. andA. Fontigny. 1987. Dynamics of aPhaeocystis dominated spring bloom in Belgian coastal waters. II. Bacterioplankton dynamics.Marine Ecology Progress Series 37:249–257.CrossRefGoogle Scholar
  13. Boissonneault-Cellineri, K. R., M. Mehta, D. J. Lonsdale, andD. A. Caron. 2001. Microbial food web interactions in two Long Island embayments.Aquatic Microbial Ecology 26:139–155.CrossRefGoogle Scholar
  14. Breuer, E., S. A. Sanudo-Wilhelmy, andR. C. Aller. 1999. Trace metals and dissolved organic carbon in an estuary with restricted river flow and a brown tide bloom.Estuaries 22:603–615.CrossRefGoogle Scholar
  15. Bricelj, V. M., N. S. Fisher, J. B. Guckert, andF.-L. E. Chu. 1989. Lipid composition and nutritional value of the brown tide algaAureococcus anophagefferens, p. 85–100.In E. M. Cosper, V. M. Bricelj, and E. J. Carpenter (eds.), Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms, Volume 35. Springer, New York.Google Scholar
  16. Bricelj, V. M. andS. H. Kuenstner. 1989. Effects of the “brown tide” on the feeding physiology and growth of bay scallops and mussels, p. 491–509.In E. M. Cosper, V. M. Bricelj, and E. J. Carpenter (eds.), Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms, Volume 35, Springer, New York.Google Scholar
  17. Bricelj, V. M. andD. J. Lonsdale. 1997.Aureococcus anophagefferens: Causes and ecological consequences of brown tides in U.S. mid-Atlantic coastal waters.Limnology and Oceanography 42:1023–1038.Google Scholar
  18. Bricelj, V. M., S. P. MacQuarrie, andR. A. Schaffner. 2001. Differential effects ofAureococcus anophagefferens isolates (“brown tide”) in unialgal and mixed suspensions on bivalve feeding.Marine Biology 139:605–615.CrossRefGoogle Scholar
  19. Bronk, D. A., P. M. Glibert, andB. B. Ward. 1994. Nitrogen uptake, dissolved organic nitrogen release, and new production.Science 265:1843–1845.CrossRefGoogle Scholar
  20. Bruno, S. F., R. D. Staker, G. M. Sharma, andJ. T. Turner. 1983. Primary productivity and phytoplankton size fraction dominance in a temperate North Atlantic estuary.Estuaries 6:200–211.CrossRefGoogle Scholar
  21. Buskey, E. J. andC. J. Hyatt. 1995. Effects of the Texas (USA) ‘brown tide’ alga on planktonic grazers.Marine Ecology Progress Series 126:285–292.CrossRefGoogle Scholar
  22. Buskey, E. J., P. A. Montagna, A. F. Amos, andT. E. Whitledge. 1997. Disruption of grazer populations as a contributing factor to the initiation of the Texas brown tide bloom.Limnology and Oceanography 42:1215–1222.Google Scholar
  23. Buskey, E. J. andD. A. Stockwell. 1993. Effects of persistent “brown tide” on zooplankton populations in the Laguna Madre of South Texas, p. 659–666.In T. J. Smayda and Y. Shimizu (eds.), Toxic Phytoplankton Booms in the Sea. Proceedings of the 5th International Conference on Toxic Marine Phytoplankton. Elsevier, Newport, Rhode Island.Google Scholar
  24. Caron, D. A., M. R. Dennett, D. M. Moran, R. A. Schaffner, D. J. Lonsdale, C. J. Gobler, R. Nuzzi, andT. I. McLean. 2003. Development and application of a monoclonal-antibody technique for countingAureococcus anophagefferens, an alga causing recurrent brown tides in the Mid-Atlantic United States.Applied Environmental Microbiology 69:5492–5502.CrossRefGoogle Scholar
  25. Caron, D. A., C. J. Gobler, D. J. Lonsdale, N. J. Buck, R. M. Cerrato, R. A. Schaffner, J. M. Rose, G. T. Taylor, K. R. Boissonneault, andR. Mehran. 2004. Microbial herbivory on the brown tide alga,Aureococcus anophagefferens: Results from natural ecosystems, mesocosms and laboratory experiments.Harmful Algae 3:439–457.CrossRefGoogle Scholar
  26. Caron, D. A., E. Lim, H. Kunze, E. M. Cosper, andD. M. Anderson. 1989. Trophic interactions between nano- and microzooplankton and the “brown tide” p. 265–294.In E. M. Cosper, V. M. Bricelj, and E. J. Carpenter (eds.), Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms, Volume 35. Springer, New York.Google Scholar
  27. Caron, D. A., E. L. Lim, G. Miceli, J. B. Waterbury, andF. W. Valois. 1991. Grazing and utilization of chroococcoid cyanobacteria and heterotrophic bacteria by protozoa in laboratory cultures and a coastal plankton community.Marine Ecology Progress Series 76:205–217.CrossRefGoogle Scholar
  28. Carpenter, E. J., C. C. Remsen, andS. W. Watson. 1972. Utilization of urea by marine phytoplankters.Limnology and Oceanography 17:265–269.Google Scholar
  29. Cerrato, R. M., D. A. Caron, D. J. Lonsdale, J. M. Rose, andR. A. Schaffner. 2004. An experimental approach to examine the effect of the hard clamMercenaria mercenaria on the development of blooms of the brown tide alga,Aureococcus anophagefferens.Marine Ecology Progress Series 281:93–108.CrossRefGoogle Scholar
  30. Chisholm, S. W. 1992. Phytoplankton size. Environmental science research.Primary Productivity and Biogeochemical Cycles in the Sea 43:213–237.Google Scholar
  31. Coffin, R. B. 1989. Bacterial uptake of dissolved free and combined amino acids in estuarine waters.Limnology and Oceanography 43:531–542.Google Scholar
  32. Colin, S. P. andH. G. Dam. 2002. Latitudinal differentiation in the effects of the toxic dinoflagellateAlexandrium spp. on the feeding and reproduction of populations of the copepodAcartia hudsonica.Harmful Algae 1:113–125.CrossRefGoogle Scholar
  33. Cosper, E. M., E. J. Carpenter, andM. Cottrell. 1989a. Primary productivity and growth dynamics of the “brown tide” in Long Island embayments, p. 139–158.In E. M. Cosper, V. M. Bricelj, and E. J. Carpenter (eds.), Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms. Springer, New York.Google Scholar
  34. Cosper, E. M., W. C. Dennison, E. J. Carpenter, V. M. Bricelj, J. G. Mitchell, S. H. Kuenstner, D. C. Colflesh, andM. Dewey. 1987. Recurrent and persistent “brown tide” blooms perturb coastal marine ecosystem.Estuaries 10:284–290.CrossRefGoogle Scholar
  35. Cosper, E. M., W. Dennison, A. Milligan, E. J. Carpenter, C. Lee, J. Holzapfel, andL. Milanese. 1989b. An examination of the environmental factors important to initiating and sustaining “brown tide” blooms, p. 317–340.In E. M. Cosper, V. M. Bricelj, and E. J. Carpenter (eds.),Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms, Volume 35. Springer, New York.Google Scholar
  36. Cosper, E. M., R. T. Garry, A. J. Milligan, andM. H. Doall. 1993. Iron, selenium and citric acid are critical to the growth of the “brown tide” microalgaAureococcus anophagefferens, p. 667–673.In T. J. Smayda and Y. Shimizu (eds.) Toxic Phytoplankton Blooms in the Sea. Proceedings of the 5th International Conference on Toxic Marine Phytoplankton. Elsevier, Newport, Rhode Island.Google Scholar
  37. Cuhel, R. L., P. B. Ortner, andD. R. S. Lean. 1984. Night synthesis of protein by algae.Limnology and Oceanography 29:731–744.Google Scholar
  38. Dennison, W. C., G. J. Marshall, andC. Wigand. 1989. Effects of “brown tide” shading on eelgrass (Zostera marina) distributions, p. 675–692.In E. M. Cosper, V. M. Bricelj, and E. J. Carpenter (ed.), Novel Phutoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms, Volume 35. Springer, New York.Google Scholar
  39. Deyoe, H. R., A. M. Chan, andC. A. Suttle. 1995. Phylogeny ofAureococcus anophagefferens and a morphologically similar bloomforming alga from Texas as determined by 18S ribosomal RNA sequence analysis.Journal of Phycology 31:413–418.CrossRefGoogle Scholar
  40. Deyeo, H., D. Stockwell, R. Bidigare, M. Latasa, P. Johnson, P. Hargraves, andC. Suttle. 1997. Description and characterization of the algal speciesAureoumbra lagunensis gent. et sp. nov. and referral ofAureoumbra andAureococcus to the Pelagophyceae.Journal of Phycology 33:1042–1048.CrossRefGoogle Scholar
  41. Deyoe, H. R., andC. A. Suttle. 1994. The inability of the Texas “brown tide” alga to use nitrate and the role of nitrogen in the initiation of a persistent bloom of this organism.Journal of Phycology 30:800–806.CrossRefGoogle Scholar
  42. Doblin, M. A., L. C. Popels, K. J. Coyne, D. A. Hutchins, S. C. Cary, andF. C. Dobbs 2004. Transport of the harmful bloom algaAureococcus anophagefferens by ocean-going ships and coastal boats.Applied and Environmental Microbiology 70:6495–6500.CrossRefGoogle Scholar
  43. Doucette, G. J.. 1995. Interactions between bacteria and harmful algae: A review.Natural Toxins 3:65–74.CrossRefGoogle Scholar
  44. Draper, C., L. Gainey, S. Shumway, andL. Shapiro. 1990. Effects ofAureococcus anophagefferens (“brown tide”) on the lateral cilia of 5 species of bivalve molluscus, p. 128–131.In E. Granéli, B. Sundström, L. Edler, and D. M. Anderson (eds.), Toxic Marine Phytoplankton, Proceedings of the 4th International Conference. Elsevier, New York.Google Scholar
  45. Droop, M. R.. 1974. Heterotrophy of carbon, p. 530–559.In W. D. P. Stewart (ed.), Algal Physiology and Biochemistry. University of California Press. Berkeley, California.Google Scholar
  46. Duguay, L. E., D. M. Monteleone, andC. Quaglietta. 1989. Abundance and distribution of zooplankton and ichthyoplankton in Great South Bay, New York, p. 599–623.In E. M. Cospep, V. M. Bricelj, and E. J. Carpenter (eds.) Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms, Volume 35, Springer, New York.Google Scholar
  47. Durbin, A. G. andE. G. Durbin. 1989. Effect of the “brown tide” on feeding, size, and egg laying rate of adult femaleAcartia tonsa, p. 625–645.In E. M. Cosper, V. M. Bricelj, and E. J. Carpenter (eds.), Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms, Volume 35. Springer, New York.Google Scholar
  48. Dzurica, S., C. Lee, E. M. Cosper, andE. J. Carpenter. 1989. Role of environmental vaiables, specifically organic compounds and nutrients, in the growth of the chrysophyteAureococcus anophagefferens, p. 229–252.In E. M. Cosper, V. M. Bricelj, and E. J. Carpenter (eds.), Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms, Volume 35. Springer, New York.Google Scholar
  49. Fan, C., P. M. Glibert, J. Alexander, andM. W. Lomas. 2003. Characterization of urease activity in three marine phytoplankton species,Aureococcus anophagefferens, Prorocentrum minimum, andThalassiosira weissflogii.Marine Biology 142:949–958.Google Scholar
  50. Gainey, Jr.,L. F. andS. E. Shumway. 1991. The physiological effect ofAureococcus anophagefferens (“brown tide”) on the lateral cilia of bivalve mollusks.Biological Bulletin 181:298–306.CrossRefGoogle Scholar
  51. Gallager, S. M., D. K. Stoecker, andV. M. Bricelj. 1989. Effects of the brown tide algae ongrowth, feeding physiology and locomotory behavior of scallop larvae (Argopecten irradians). p. 511–542.In E. M. Cosper, V. M. Bricelj, and E. J. Carpenter (eds.), Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms, Volume 35. Springer, New York.Google Scholar
  52. Garry, R. T., P. Hearing, andE. M. Cosper. 1998. Characterization of a lytic virus infectious to the bloom-forming microalgaAureococcus anophagefferens (Pelagophyceae).Journal of Phycology 34:616–621.CrossRefGoogle Scholar
  53. Gastrich, M. D., O. R. Anderson, S. S. Benmayor, andE. M. Cosper. 1998. Ultrastructural analysis of viral infection in the brown-tide alga,Aureococcus anophagefferens (Pelagophyceae).Phycologia 37:300–306.CrossRefGoogle Scholar
  54. Gastrich, M. D., O. R. Anderson, andE. M. Cosper. 2002. Virallike particles (VLPS) in the alga,Aureococcus anophagefrerens (Pelagophyceae), during 1999–2000 brown tide blooms in Little Egg Harbor, New Jersey.Estuaries 25:938–943.CrossRefGoogle Scholar
  55. Gastrich, M., J. L. Bell, G. J. Gobler, O. R. Anderson, andS. W. Wilhelm. 2004. Viruses as potential regulators of regional brown tide blooms caused, by the alga,Aureococcus anophagefferens: A comparison of bloom years 1999–2000 and 2002.Estuaries 27:112–119.CrossRefGoogle Scholar
  56. Gastrich, M. D., R. Lathrop, S. Haag, M. P. Weinstein, M. Danko, D. A. Caron, andR. Schaffner 2004. Assessment of brown tide blooms, caused byAureococcus anophagefferens, and contributing factors in New Jersey coastal bays: 2000–2002.Harmful Algae 3:305–320.CrossRefGoogle Scholar
  57. Giner, J.-L. andG. L. Boyer. 1998. Sterols of the brown tide algaAureococcus anophagefferens.Phytochemistry 48:475–477.CrossRefGoogle Scholar
  58. Giner, J.-L., J. A. Faraldos, andG. L. Boyer. 2003. Unique sterols of the toxic dinoflagellateCymnodinium breve and a proposed defensive function for unusual marine sterols.Journal of Phycology 39:1–6.CrossRefGoogle Scholar
  59. Giner, J.-L., X. Li, andG. L. Boyer 2001. Sterol composition ofAureoumbra legunensis, the Texas brown tide alga.Phytochemistry 57:787–789.CrossRefGoogle Scholar
  60. Giner, J.-L., H. Zhao, G. L. Boyer, M. Satchwell, andR. A. Andersen. 2004. A survey of pelagophyte sterols and a sterol paleochronology of the brown tide algaAureococcus anophagefferens in Long Island waters.Harmful Algae 3:207–208.Google Scholar
  61. Glibert, P. M., R. Magnien, M. W. Lomas, J. Alexander, C. K. Fan, E. Haramoto, M. Trice, andT. M. Kana 2001. Harmful algal blooms in the Chesapeake and coastal bays of Maryland, USA: Comparison of 1997, 1998, and 1999 events.Estuaries 24:875–883.CrossRefGoogle Scholar
  62. Gobler, C. J. andG. E. Boneillo. 2003. Impacts of anthropogenically-influenced groundwater seepage on water quality and phytoplankton dynamics within a coastal marine ecosystem.Marine Ecology Progress Series 255:101–114.CrossRefGoogle Scholar
  63. Gobler, C. J., G. E. Boneillo, C. Debenham, andD. A. Caron. 2004a. Nutrient limitation, organic matter cycling, and plankton dynamics during anAureococcus anophagefferens bloom in Great South Bay, NY.Aquatic Microbial Ecology 35:31–43.CrossRefGoogle Scholar
  64. Gobler, C. J. andE. M. Cosper. 1996. Stimulation of “brown tide” blooms by iron, p. 321–324.In T. Yasumoto, Y. Oshima, and Y. Fukuyo (eds.), Harmful and Toxic Algal Blooms. Intergovernmental Oceanographic Commission of UNESCO. Sendai, Japan.Google Scholar
  65. Gobler, C. J., L. Cullison, F. Koch, T. Harder, andJ. W. Krause. 2005. Influence of freshwater flow, ocean exchanges, and seasonal cycles on phytoplankton—Nutrient dynamics in a temporarily open estuary.Estuarine, Coastal, and Shelf Science 65:275–288.CrossRefGoogle Scholar
  66. Gobler, C. J., S. N. Deonarine, J. Leigh-Bell, M. Gastrich, O. R. Anderson, andS. W. Wilhelm. 2004c. Ecology of phytoplankton communities dominated byAureococcus anophagefferens: The role of viruses, nutrients, and microzooplankton grazing.Harmful Algae 3:471–483.CrossRefGoogle Scholar
  67. Gobler, C. J., J. R. Donat, J. A. Consolova, andS. A. Sanudo-Wilhelmy. 2002a. Physiochemical speciation of iron during coastal algal blooms.Marine Chemistry 77:71–89.CrossRefGoogle Scholar
  68. Gobler, C. J., D. A. Hutchins, N. S. Fisher, E. M. Cosper, andS. A. Sanudo-Wilhelmy. 1997. Cycling and bioavailability of C, N, P, Fe, and Se released by viral lysis of a marine chrysophyte.Limnology and Oceanography 42:1492–1504.Google Scholar
  69. Gobler, C. J., G. Pererya, J. Krause, K. Maurer, M. Gastrich, O. R. Anderson, andS. W. Wilhelm. 2004b. Impacts of viruses isolated from New York waters on growth of the brown tide alga,Aureococcus anophagefferens: A field and laboratory assessment.Harmful Algae 3:209–210.CrossRefGoogle Scholar
  70. Gobler, C. J., M. J. Renaghan, andN. J. Buck. 2002b. Impacts of nutrients and grazing mortality on the abundance ofAureococcus anophagefferens during a New York brown tide bloom.Limnology and Oceanography 47:129–141.Google Scholar
  71. Gobler, C. J., andS. A. Sanudo-Wilhelmy. 2001a. Effects of organic carbon, organic nitrogen, inorganic nutrients, and iron additions on the growth of phytoplankton and bacteria during a brown tide bloom.Marine Ecology Progress Series 209:19–34.CrossRefGoogle Scholar
  72. Gobler, C. J. andS. A. Sanudo-Wilhelmy. 2001b. Temporal variability of groundwater seepage and brown tide blooms in a Long Island embayment.Marine Ecology Progress Series 217:299–309.CrossRefGoogle Scholar
  73. Gobler, C. J. andS. A. Sanudo-Wilhelmy. 2003. Cycling of colloidal organic carbon and nitrogen during estuarine plankton blooms.Limnology and Oceanography 48:2314–2320.Google Scholar
  74. Goldman, J. C., D. A. Carbon, andM. R. Dennett. 1987. Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C∶N ratio.Limnology and Oceanography 32:1239–1252.Google Scholar
  75. Goldman, J. C. andM. R. Dennett. 1991. Ammonium regeneration and carbon utilization by marine bacteria grown on mixed substrates.Marine Biology 109:369–378.CrossRefGoogle Scholar
  76. Greenfield, D. I.. 2002. The influence of variability in plankton community composition on the growth of juvenile hard clamsMercenaria mercenaria (L.). Ph.D. Dissertation, Stony Brook University, New York.Google Scholar
  77. Greenfield, D. I. andD. J. Lonsdale. 2002. Mortality and growth of juvenilc hard clamsMercenaria mercenaria during brown tide.Marine Biology 141:1045–1050.CrossRefGoogle Scholar
  78. Greenfield, D. I., D. J. Lonsdale, R. M. Cerrato, andG. R. Lopez. 2004. Effects of background concentrations ofAureococcus anophagefferens (brown tide) on growth and feeding in the bivalveMercenaria mercenaria.Marine Ecology Progress Series 274:171–181.CrossRefGoogle Scholar
  79. Harston, Jr.,M. G., C. L. Holtmeier, W. Lampert, L. J. Weider, D. M. Post, J. M. Fisher, C. E. Caceres, J. A. Fox, andU. Gaedke. 2002. Natural selection for grazer resistance to toxic cyanobacteria: Evolution of phenotypic plasticity?.Evolution 55:2203–2214.Google Scholar
  80. Halpern, B. S. andR. R. Warner. 2002. Marine reserves have rapid and lasting effects.Ecology Letters 5:361–366.CrossRefGoogle Scholar
  81. Hardy, C. D. 1976. A preliminary description of the Peconic Bay Estuary, Marine Sciences Research Center, SUNY-Stony Brook. Special Report 3. Stony Brook, New York.Google Scholar
  82. Hoagland, P., D. M. Anderson, Y. Kaoru, andA. W. White. 2002. Sates: Estimates, assessment issues and informational needs.Estuaries 25:819–837.CrossRefGoogle Scholar
  83. Hooks, C. E., R. R. Bidigare, M. D. Keller, andR. R. L. Gullard. 1988. Coccoid eukaryotic marine ultraplankters with four different HPLC pigment signatures.Journal of Phycology 24:571–580.Google Scholar
  84. Hutchins, D. A.. 1995. Iron and the marine phytoplankton community.Progress in Phycological Research 11:1–49.Google Scholar
  85. Hutchins, D. A., G. R. Ditullio, Y. Lzhang, andK. W. Bruland. 1998. An iron limitation mosaic in the California upwelling regime.Limnology and Oceanography 43:1037–1054.Google Scholar
  86. Irigoien, X., R. P. Harris, H. M. Verheye, P. Joly, J. Runge, M. Starr, D. Pond, R. Campbell, R. Shreeve, P. Ward, A. N. Smith, H. G. Dam, W. Peterson, V. Tirelli, M. Koski, T. Smith, D. Harbour, andR. Davidson. 2002. Copepod hatching success in marine ecosystems with high diatom concentrations.Nature 419:387–389.CrossRefGoogle Scholar
  87. Jackson, J. B., M. X. Kirby, W. H. Berger, K. A. Bjorndal, L. W. Botsford, B. J. Bourque, R. H. Bradbury, R. Cooke, J. Erlandson, J. A. Estes, T. P. Hughes, S. Kidwell, C. B. Lange, H. S. Lenihan, J. M. Pandolfi, C. H. Peterson, R. S. Steneck, M. J. Tegner, andR. R. Warner. 2001. Historical overfishing and the recent collapse of coastal ecosystems.Science 293:629–638.CrossRefGoogle Scholar
  88. Kana, T. M., M. W. Lomas, H. L. MacIntyre, J. C. Cornwell, andC. J. Gobler. 2004. Stimulation of the brown tide organism,Aureococcus anophagefferens, by selective nutrient additions toin situ mesocosms.Harmful Algae 3:377–388.CrossRefGoogle Scholar
  89. Kassner, J.. 1993. Possible effects of reduced hard clam abundance in Great South Bay.On the Water July/Aug:4–5.Google Scholar
  90. Kaufman, Z. G., J. S. Lively, andE. J. Carpenter. 1983. Uptake of nitrogenous nutrients by phytoplankton in a barrier island estuary: Great South Bay.Estuarine Coastal and Shelf Science 17:483–493.CrossRefGoogle Scholar
  91. Keller, A. A. andR. L. Rice 1989. Effects of nutrient enrichment on natural populations of the brown tide phytoplanktonAureococcus anophagefferens (Chrysophyceae)Journal of Physcology 25:636–646.CrossRefGoogle Scholar
  92. Keller, M. D., W. K. Bellows, andR. R. L. Guillard. 1989. Dimethylsulfide production and marine phytoplankton: An additional impact of unusual blooms, p. 101–115.In E. M. Cosper, V. M. Bricelj, and E. J. Carpenter (eds.), Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms, Volume 35. Springer, New York.Google Scholar
  93. Kirchman, D. L., R. G. Keil, andP. A. Wheeler. 1990. Carbon limitation of ammonium uptake by heterotrophic bacteria in the subartic Pacific.Limnology and Oceanography 35:1258–1266.Google Scholar
  94. Kirchman, D. L., Y. Suzuki, C. Garside, andH. W. Ducklow. 1991. High turnover rates of dissolved organic carbon during a spring phytoplankton bloom.Nature 352:612–614.CrossRefGoogle Scholar
  95. Laetz, D. A.. 2002. Reconstructing the growth of hard clams,Mercenaria mercenaria, under brown tide conditions. M.S. Thesis, Stony Brook University, New York.Google Scholar
  96. Landry, M. R., J. Kirshtein, andJ. Constantinou. 1995. A refined dilution technique for measuring the community grazing impact of microzooplankton, with experimental tests in the central equatorial Pacific.Marine Ecology Progres Series 120:53–63.CrossRefGoogle Scholar
  97. Laroche, J., R. Nuzzi, R. Waters, K. Wyman, P. G. Falkowski, andD. W. R. Wallace. 1997. Brown tide blooms in Long Island's coastal waters linked to interannual variability in groundwater flow.Global Change Biology 3:101–114.CrossRefGoogle Scholar
  98. Lewitus, A. J., andD. A. Caron. 1991. Physiological responses of phytoflagellates to dissolved organic substrate additions, 2. Dominant role of autotrophic nutrition inPyrenomanas salina (Crytophyceae).Plant Cell Physiology 32:791–801.Google Scholar
  99. Lewitus, A. J. andT. M. Kana. 1995. Light respiration in six estuarine phytoplankton species: conditions.Journal of Phycology 31:754–761.CrossRefGoogle Scholar
  100. Liu, H. andE. J. Buskey. 2000. The exopolymer secretion (ESP) layer surroundingAureoumbra lagunensis effects growth, grazing, and behavior of protozoa.Limnology and Oceanography 45:1187–1191.Google Scholar
  101. Lively, J. S., Z. Kaufman, andE. J. Carpenter. 1983. Phytoplankton ecology of a barrier island estuary: Great South Bay, New York,Estuarine and Coastal Shelf Science 16:51–68.CrossRefGoogle Scholar
  102. Lomas, M. W., P. M. Glibert, andG. M. Berg. 1996. Characterization of nitrogen uptake by natural populations ofAureococcus anophagefferens (Chrysophyceae) as a function of incubation duration, substrate concentration, light, and temperature.Journal of Phycology 32:907–916.CrossRefGoogle Scholar
  103. Lomas, M. W., P. M. Glibert, D. A. Clougherty, D. R. Huber, J. Jones, J. Alexander, andE. Haramoto. 2001. Elevated organic nutrient ratios associated with brown tide algal blooms ofAureococcus anophagefferens (Pelagophyceae).Journal of Plankton Research 25:1339–1344.CrossRefGoogle Scholar
  104. Lomas, M. W., T. M. Kana, H. L. MacIntyre, andJ. C. Cornwell. 2004. Interannual variability ofAureococcus anophagefferens in Quantuck Bay Long Island: Natural test of the DON hypothesis.Harmful Algae 3:389–402.CrossRefGoogle Scholar
  105. Lonsdale, D. J., E. M. Cosper, W.-S. Kim, M. Doall, A. Divadeenam, andS. H. Jonasdottir. 1996. Food web interactions in the plankton of Long Island bays, with preliminary observations on brown tide effects.Marine Ecology Progress Series 134:247–263.CrossRefGoogle Scholar
  106. Lonsdale, D. J., G. T. Taylor, E. M. Hillebrand, and D. I. Greenfield. 2002. Comparative phytoplankton and microzooplankton analyses in Long Island Bays. Final Report to the Suffolk County Department of Health Services, Riverhead, New York.Google Scholar
  107. MacIntyre, H. L., R. J. Geider, andD. C. Miller. 1996. Microphytobenthos: The ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. 1. Distribution, abundance, and primary production.Estuaries 19:186–201.CrossRefGoogle Scholar
  108. MacIntyre, H. L., M. W. Lomas, J. C. Cornwell, D. Suggett, C. J. Gobler, E. Koch, andT. M. Kana. 2004. Mediation of benthicpelagic coupling by microphytobenthos: An energy and nutrient based model for initiation of blooms ofAureococcus anophagefferens.Harmful Algae 3:403–437.CrossRefGoogle Scholar
  109. Mahoney, J. B., D. Jeffress, C. Zeitlin, P. S. Olsen, H. Grebe, and J. Brooks. 2003. Distribution of the brown tide picoplankterAureococcus anophagefferens in western New York Bight coastal waters. Northeast Fisheries Science Center Reference Document 03-12. Sandy Hook, New Jersey.Google Scholar
  110. Malone, T. C., D. J. Conley, T. R. Fisher, P. M. Glibert, L. W. Harding, andK. G. Sellner. 1996. Scales of nutrient-limited phytoplankton productivity in Chesapeake Bay.Estuaries 19:371–385.CrossRefGoogle Scholar
  111. Martins, C. A., D. Kulis, S. Franca, andD. M. Anderson. 2004. The loss of PSP toxin production in a formerly toxicAlexandrium lusitanicum clone.Toxicon 43:195–205.CrossRefGoogle Scholar
  112. Mauge, T. H., E. Friberg, D. J. Hughes, andI. Morris. 1980. Extracellular release of carbon by marine phytoplankton: A physiological approach.Limnology and Oceanography 25:262–279.Google Scholar
  113. McGillicuddy, D. J., R. P. Signell, C. A. Stock, B. A. Keafer, M. D. Keller, R. D. Hetland, andD. M. Anderson. 2003. A mechanism for offshore initiation of harmful algal blooms in the coastal Gulf of Maine.Journal of Plankton Research 25:1131–1138.CrossRefGoogle Scholar
  114. McHugh, J. L. 1991. The hard clam fishery past and present, p. 55–65.In J. R. Schubel, T. M. Bell, and H. H. Carter (eds.), The Great South Bay. State University of New York Press, Albany, New York.Google Scholar
  115. McManus, G. B. andM. C. Edertington-Cantrell. 1992. Phytoplankton pigments and growth rates, and microzooplankton grazing in a large temperate estuary.Marine Ecology Progress Series 87:77–85.CrossRefGoogle Scholar
  116. Mehran, R. 1996. Effects ofAureococcus anophagefferens on microzooplankton grazing and growth rates in the Peconic Bays system, Long Island, NY. M.S. Thesis, State University of New York at Stony Brook, New York.Google Scholar
  117. Miller, C. A., P. M. Glibert, G. M. Berg, andM. R. Mulholland. 1997. Effects of grazer and substrate amendments on nutrient and plankton dynamics in estuarine enclosures.Aquatic Microbial Ecology 12:251–261.CrossRefGoogle Scholar
  118. Milligan, A. J. 1992. An investigation of factors contributing to blooms of the “brown tide”Aureococcus anophagefferens (Chrysophyceae) under nutrient saturated, light limited conditions. M.S. Thesis, State University of New York at Stony Brook, New York.Google Scholar
  119. Millgan, A. J. andE. M. Cosper. 1997. Growth and photosynthesis of the ‘brown tide’ microalgaAureococcus anophagefferens in subsaturating constant and fluctuating irradiance.Marine Ecology Progress Series 153:67–75.CrossRefGoogle Scholar
  120. Milligan, K. L. D. andE. M. Cosper. 1994. Isolation of virus capable of lysing the brown tide microalga,Aureococcus anophagefferens.Science 266:805–807.CrossRefGoogle Scholar
  121. Minei, V. 1989. Brown tide comprehensive assessment and management program, p. 741–760.In E. M. Cosper, V. M. Bricelj, and E. J. Carpenter (eds.), Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms, Volume 35. Springer, New York.Google Scholar
  122. Montagna, P. A., D. A. Stockwell, andR. D. Kalke. 1993. Dwarf surf clamMulinia lateralis (Say, 1822) populations and feeding during the Texas brown tide event.Journal of Shellfish Research 12:433–442.Google Scholar
  123. Mulholland, M. R., G. E. Boneillo, andE. Minor. 2004. A comparison of N and C uptake during brown tide (Aureococcus anophagefferens) blooms from two coastal bays on the east coast of the USA.Harmful Algae 3:361–376.CrossRefGoogle Scholar
  124. Mulholland, M. R., P. M. Glibert, G. M. Berg, L. Van Heukelem, S. Pantoja, andC. Lee. 1998. Extracellular amino acid oxidation by microplankton: A cross-ecosystem comparison.Aquatic Microbial Ecology 15:141–152.CrossRefGoogle Scholar
  125. Mulholland, M. R., C. J. Gobler, andC. Lee. 2002. Peptide hydrolysis, amino acid oxidation and N uptake in communities seasonally dominated byAureococcus anophagefferens.Limnology and Oceanography 47:1094–1108.Google Scholar
  126. New York State Department of Environmental Conservation (NYSDEC). 1986. New York Shellfish Production. Final Report—Consumer products project NYSDEC Albany, New York.Google Scholar
  127. Neilson, A. H. andR. A. Lewin. 1974. The uptake and utilization of organic carbon by algae: An essay in comparative biochemistry.Phycologia 13:227–264.Google Scholar
  128. Newell, R. 1988. Ecological changes in Chesapeake Bay: Are they the result of overharvesting the American oyster,Crassostrea virginica?, p. 536–546.In M. P. Lynch and E. C. Krome (eds.), Understanding the Estuary: Advances in Chesapeake Bay Research. Chesapeake Bay Research Consortium, Solomons, Maryland.Google Scholar
  129. Nguyen, R. T. andH. R. Harvey. 1997. Protein and amino acid cycling during phytoplankton decomposition in oxic and anoxic waters.Organic Geochemistry 27:115–128.CrossRefGoogle Scholar
  130. Nichols, D. B. 2000. Iron and nitrogen utilization in the brown tide alga, Aureococcus anophagefferens. M.S. Thesis, State University of New York-College of Environmental Science and Forestry. Syracuse, New York.Google Scholar
  131. Nichols, D. B., M. F. Satchwell, J. E. Alexander, N. M. Martin, M. T. Baesl, andG. L. Boyer. 2001. Iron nutrition in the brown tide algae,Aureococcus anophagefferens: Characterization of a ferric chelate reductase activity, p. 340–343.In G. M. Hallegraeff, S. I. Blackburn, C. J. Bolch, and R. J. Lewis (eds.), Harmful Algal Blooms 2000. Intergovernmental Oceanographic Commission of UNESCO, Hobart, Tasmania.Google Scholar
  132. Nuzzi, R., P. S. Olsen, J. B. Mahoney, andG. Zodl. 1996. The firstAureococcus anophagefferens brown tide in New Jersey.Harmful Algae News 15:8–9.Google Scholar
  133. Nuzzi, R. andR. M. Waters. 1989. The spatial and temporal distribution of “brown tide” in eastern Long Island, p. 117–138.In E. M. Cosper, V. M. Bricelj, and E. J. Carpenter (eds.), Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms, Volume 35. Springer, New York.Google Scholar
  134. Nuzzi, R. andR. M. Waters. 2004. Long-term perspective on the dynamics of brown tide blooms in Long Island coastal bays.Harmful Algae 3:279–293.CrossRefGoogle Scholar
  135. Olsen, P. S. 1989. Development and distribution of a brown-water algal bloom in Barnegat Bay, New Jersey with perspective on resources and other red tides in the region, p. 189–212.In E. M. Cosper, V. M. Bricelj, and E. J. Carpenter (eds.), Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms, Volume 35. Springer, New York.Google Scholar
  136. Parker, R. R., J. Siebert, andT. J. Brown. 1975. Inhibition of primary productivity through heterotrophic competition for nitrate in a stratified estuary.Journal of the Fisheries Research Board of Canada 32:72–77.Google Scholar
  137. Parsons, T. R., L. J. Albright, F. Whitney, C. S. Wong, andP. J. L. e. B. Williams. 1981. The effect of glucose on the productivity of seawater: An experimental approach using controlled aquatic ecosystems.Marine Environmental Research 4:229–242.CrossRefGoogle Scholar
  138. Pitcher, G. C. andD. Calder. 2000. Harmful algal blooms of the southern Benguela Current: A review and appraisal of monitoring from 1989 to 1997.South African Journal of Marine Science-Suid-Afrikaanse Tydskrif Vir Seewetenskap 22:255–271.Google Scholar
  139. Popels, L. C., K. J. Coyne, R. Forbes, F. Pustizzi, C. J. Gobler, S. C. Cary, andD. A. Hutchins. 2003. The use of quantitative polymerase chain reaction for the detection and enumeration of the harmful algaAureococcus anophagefferens in environmental samples along the United States east coast.Limnology and Oceanography Methods 1:92–102.Google Scholar
  140. Popels, L. C. andD. A. Hutchins. 2002. Factors affecting dark survival of the brown tide algaAureococcus anophagefferens (Pelagophyceae).Journal of Phycology 38:738–744.CrossRefGoogle Scholar
  141. Probyn, T., G. Pitcher, R. Pienaar, andR. Nuzzi. 2001. Brown tides and mariculture in Saldanha Bay, South Africa.Marine Pollution Bulletin 42:405–408.CrossRefGoogle Scholar
  142. Pustizzi, F., H. MacIntyre, M. E. Warner, andD. A. Hutchins. 2004. Interaction of nitrogen source and light intensity on the growth and photosynthesis of the brown tide alga Aureococcus anophagefferens.Harmful Algae 3:343–360.CrossRefGoogle Scholar
  143. Ryther, J. H. 1989. Historical perspective of phytoplankton blooms on Long Island and the Green Tides of the 1950's, p. 375–382.In E. M. Cosper, V. M. Bricelj, and E. J. Carpenter (eds.), Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms, Volume 35, Springer, New York.Google Scholar
  144. Ryther, J. H. andW. M. Dunstan. 1971. Nitrogen, phosphorus and eutrophication in the coastal marine environment.Science 171:1008–1013.CrossRefGoogle Scholar
  145. Sanders, R. andD. A. Purdie. 1998. Bacterial response to blooms dominated by diatoms andEmiliania huxleyi in nutrient enriched mesocosms.Estuarine Coastal and Shelf Science 46:35–48.CrossRefGoogle Scholar
  146. Sandgren, C. D. 1980. Resting cyst formation in selected chrysophyte flagellates—An ultrastructural survey including a proposal for the phylogenic significance of interspecific variations in the encystment process.Protistologica 16:289–303.Google Scholar
  147. Saunders, G. W., D. Potter, andR. A. Andersen. 1997. Phylogenetic affinities of the Sarcinochrysidales and Chrysomeridales (Heterokonta) based on analyses of molecular and combined data.Journal of Phycology 33:310–318.CrossRefGoogle Scholar
  148. Saunders, G. W., D. Potter, M. Paskind, andR. A. Andersen. 1995. Cladistic analyses of combined traditional and molecular data sets reveal an algal lineage.Proceedings of the National Academy of Science USA 92:244–248.CrossRefGoogle Scholar
  149. Schaffner, R. A. 1999. The role of suspension feeding bivalves in the initiation and control ofAureococcus anophagefferens. M.S. Thesis, State University of New York at Stony Brook, New York.Google Scholar
  150. Sengco, M. R. andD. M. Anderson. 2004. Controlling harmful algal blooms through clay flocculation.Journal of Eukaryotic Microbiology 51:169–172.CrossRefGoogle Scholar
  151. Sengco, M. R., A. Li, K. Tugend, D. Kullis, andD. M. Anderson. 2001. Removal of red- and brown-tide cells using clay flocculation. I. Laboratory culture experiments withGymnodinium breve andAureococcus anophagefferens.Marine Ecology Progress Series 210:41–53.CrossRefGoogle Scholar
  152. Sherr, B. F., E. B. Sherr, T. L. Andrew, R. D. Fallon, andS. Y. Newell. 1986. Trophic interactions between heterotrophic protozoa and bacterioplankton in estuarine waters analyzed with selective metabolic inhibitors.Marine Ecology Progress Series 32:169–179.CrossRefGoogle Scholar
  153. Shiah, F.-K. andH. W. Ducklow. 1995. Regulation of bacterial abundance and production by substrate supply and bacterivory: A mesocosm study.Microbial Ecology 30:239–255.CrossRefGoogle Scholar
  154. Shumway, S. E., D. M. Frank, L. M. Ewart, andJ. E. Ward. 2003. Effect of yellow loess on clearance rate in seven species of benthic, filter-feeding invertebrates.Aquaculture Research 34:1392–1402.CrossRefGoogle Scholar
  155. Sieburth, J. McN. andP. W. Johnson. 1989. Picoplankton ultrastructure: A decade of preparation for the borwn tide alga,Aureococcus anophagefferens, p. 1–22,In E. M. Cosper, V. M. Bricelj, and E. J. Carpenter (eds.), Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms, Volume 35. Springer, New York.Google Scholar
  156. Sieburth, J. McN., P. W. Johnson, andP. E. Hargraves. 1988. Ultrastructure and ecology ofAureococcus anophagefferens gen. et sp. nov. (Chrysophyceae): The dominant picoplankter during a bloom in Narragansett Bay, Rhode Island, Summer 1985.Journal of Phycology 24:416–425.CrossRefGoogle Scholar
  157. Sieracki, M. E., C. J. Gobler, T. Cucci, E. Thier, andI. Hobson. 2004. Pico- and nanoplankton dynamics during bloom initiation ofAureococcus in a Long Island, NY bay.Harmful Algae 3:459–470.CrossRefGoogle Scholar
  158. Sieracki, M. E., M. D. Keller, T. L. Cucci, andE. Their. 1999. Plankton community ecology during the bloom initiation period of the brown tide organismAureococcus anophagefferens in coastal embayments of Long Island, N.Y.EOS 80:285.Google Scholar
  159. Smayda, T. J. 1986. Occurrence and distribution of the 1985 brown tide in Narragansett Bay, p. 7–9.In R. Nuzzi (ed.), Proceedings of the Emergency Conference on “Brown Tide” and Other Unusual Algal Blooms. New York State Interagency Committee on Aquatic Resources Development. Riverhead, New York.Google Scholar
  160. Smayda, T. J. 1990. Novel and nuisance phytoplankton blooms in the sea: Evidence for a global epidemic, p. 29–40.In E. Graneli, B. Sundstrom, L. Edler, and D. M. Anderson (eds.), Toxic Marine Phytoplankton. Elsevier, New York.Google Scholar
  161. Smayda, T. J. andT. A. Villareal. 1989. The 1985 “brown tide” and the open phytoplankton niche in Narragansett Bay during summer, p. 159–188.In E. M. Cosper, V. M. Bricelj, and E. J. Carpenter (eds.), Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms, Volume 35. Springer, New York.Google Scholar
  162. Spies, A., D. Nutbrown, andT. R. Parsons. 1983. An experimental approach to estuarine microplankton ecology.Estuarine Coastal and Shelf Science 17:97–105.CrossRefGoogle Scholar
  163. Stockwell, D. A., D. A. Buskey, andT. E. Whitledge. 1993. Studies on conditions conducive to the development and maintenance of a persistent brown tide in Laguna Madre, Texas, p. 693–698.In T. J. Smayda and Y. Shimizu (eds.), Toxic Phytoplankton Blooms in the Sea. Elsevier, Amsterdam, The Netherlands.Google Scholar
  164. Suffolk County Department of Health Services (SCDHS). 1976–2000. Office of Ecology's annual report of water quality in the Peconic Estuary, Riverhead, New York.Google Scholar
  165. Sunda, W., D. J. Kieber, R. P. Kiene, andS. Huntsman. 2002. An antioxidant function for DMSP and DMS in marine algae.Nature 418:317–320.CrossRefGoogle Scholar
  166. Tang, K. W., H. H. Jakobsen, andA. W. Visser. 2001.Phaeocystis globosa (Prymnesiophyceae) and the planktonic food web: Feeding, growth, and trophic interactions among grazers.Limnology and Oceanography 46:1860–1870.CrossRefGoogle Scholar
  167. Tarutani, K., K. Nagasaki, S. Itakura, andM. Yamaguchi. 2001. Isolation of a virus infecting the novel shellfish-killing dinoflagellateHeterocapsa circularisquama.Aquatic Microbial Ecology 23:101–111.CrossRefGoogle Scholar
  168. Taylor, B. T., S. A. Sanudo-Wilhelmy, and C. J. Gobler. 2006. Nitrogen speciation and concentrations of nitrogen as determinants of brown tide (Aureococcus anophagefferens, Pelagophyceae) initiation: An experimental evaluation.Marine Ecology Progress Series in press.Google Scholar
  169. Thompson, P. A., M. E. Levasseur, andP. J. Harrison. 1989. Light-limited growth on ammonium vs. nitrate: What is the advantage for marine phytoplankton?Limnology and Oceanography 34:1014–1024.CrossRefGoogle Scholar
  170. Thomsen, H. A. 1986. A survey of the smallest eucaryotic organisms of the marine phytoplankton, p. 121–158.In T. Platt and W. K. W. Li (eds.), Photosynthetic Picoplankton,Canadian Bulletin of Fisheries and Aquatic Science 214.Google Scholar
  171. Tollefsen, R. C. 1995. Stakeholders' questions and perspectives. Proceedings for the Brown Tide Summit, p. 25–30.In A. McElroy (ed.), Proceeding of the Brown Tide Summit, Publication # NYSGI-2-95-001, New York Sea Grant Institute, New York.Google Scholar
  172. Tracey, G. A., R. L. Steele, J. Gatze, D. K. Phelps, R. Nuzzi, M. Waters, andD. M. Anderson. 1989a. Testing the application of biomonitoring methods for assessing environmental effects of noxious algal blooms, p. 557–574.In E. M. Cosper, V. M. Bricelj, and E. J. Carpenter (eds.), Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms, Volume 35. Springer, New York.Google Scholar
  173. Tracey, G. A., R. L. Steele, andL. Wright. 1989b. Variable toxicity of the brown tide organism,Aureococcus anophagefferens, in relation to environmental conditions for growth, p. 233–237.In E. Graneli, B. Sundtsrom, L. Edler, and D. M. Anerson (eds.), Toxic Marine Phytoplankton, Elsevier, New York.Google Scholar
  174. Trice, T. M., P. M. Glibert, C. Lea, andL. Van Heukelem. 2004. HPLC pigment records provide evidence of past blooms ofAureococcus anophagefferens in the Coastal Bays of Maryland and Virginia, USA.Harmful Algae 3:295–304.CrossRefGoogle Scholar
  175. Turner, R. E., N. Qureshi, N. N. Rabalais, Q. Dortch, D. Justic, R. F. Shaw, andJ. Cope. 1998. Fluctuating silicate: Nitrate ratios and coastal plankton food webs.Proceeding of the National Academy of Sciences USA 95:13048–13051.CrossRefGoogle Scholar
  176. Vieira, M. E. C. 1989. The case for meterologically driven fluctuations in residence times of Long Island waters subject to algal blooms, p. 295–306.In E. M. Cosper, V. M. Bricelj, and E. J. Carpenter (eds.), Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms. Springer, New York.Google Scholar
  177. Waterbury, J., S. Watson, F. Valois, and D. Franks. 1986. Biological and ecological characterization of the marine unicellular cyanobacterium,Synechococcus. In T. Platt and W. K. W. Li (eds.), Photosynthetic Picoplankton,Canadian Bulletin of Fisheries and Aquatic Science 214:71–120.Google Scholar
  178. Wazniak, C. E. andP. M. Glibert. 2004. Potential impacts of brown tide,Aureococcus anophagefferens, on juvenile hard clams,Mercenaria mercenaria, in the coastal bays of Maryland, USA.Harmful Algae 3:321–329.CrossRefGoogle Scholar
  179. Wheeler, P. A. andD. L. Kirchman. 1986. Utilization of inorganic and organic nitrogen by bacteria in marine systems.Limnology and Oceanography 31:998–1009.Google Scholar
  180. Wikfors, G. H., G. E. Ferris, andB. C. Smith. 1992. The relationship between gross biochemical composition of cultured algal foods and growth of the hard clam,Mercenaria mercenaria (L.).Aquaculture 108:135–154.CrossRefGoogle Scholar
  181. Wilson, R. 1995. Aspects of tidal and subtidal flushing within the Peconic Bays Estuary, p. 53–56,In A. McElroy (ed.), Proceeding of the Brown Tide Summit, Publication # NYSGI-W-95-001, New York Sea Grant Institute, New York.Google Scholar
  182. Wilson, R. E., K. C. Wong, and H. H. Carter. Aspects of circulation and exchange in Great South Bay, p. 33–42.In J. R. Schubel, T. M. Bell, and H. H. Carter (eds.), The Great South Bay, State University of New York Press, Albany, New York.Google Scholar
  183. Wommack, K. E. andR. R. Colwell. 2000. Virioplankton: Viruses in aquatic ecosystems.Microbiology and Molecular Biology Reviews 64:69–114.CrossRefGoogle Scholar
  184. Yentsch, C. S., D. A. Phinney, andL. P. Shapiro. 1989. Adsorption and fluorescent characteristics of the brown tide chrysophyte: Its role on light reduction in coastal marine environments, p. 77–85.In E. M. Cosper, V. M. Bricelj, and E. J. Carpenter (eds.), Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms, Volume 35. Springer, New York.Google Scholar

Sources of Unpublished Materials

  1. Cerrato, R. M. personal communication. Marine Sciences Research Center, Stony Brook University Stony Brook, New York 11794.Google Scholar
  2. Gastrich, M. personal communication. Columbia University, Lamont-Doherty Earth Observatory, 61 Route 9W, Palisades, New York 10964-1000.Google Scholar
  3. Newell, R. personal communication. Horn Point Laboratory, University of Maryland Center for Environmental Science, P. O. Box 775, Cambridge, Maryland 21613.Google Scholar
  4. Sieracki, M. personal communication. Bigelow Laboratory for Ocean Sciences, McKown Point Road, W. Boothbay Harbor, Maine 04575.Google Scholar
  5. Strong, C. personal communication. Bluepoints Oyster Company, Sayville, New YorkGoogle Scholar
  6. Szmyr, D. B., J. Alexander, and G. L. Boyer. 1998. Characterization of nitrate reductase from the brown tide alga,Aureococcus anophagefferens. Abstracts, American Society of Limnology and Oceanography. February 9–13, 1998. San Diego, California.Google Scholar
  7. Tango, P. personal communication. Maryland Department of Natural Resources, 580 Taylor Avenue, Tawes State Office Building, Annapolis, Maryland 21401.Google Scholar

Copyright information

© Estuarine Research Federation 2005

Authors and Affiliations

  1. 1.Marine Sciences Research CenterStony Brook UniversityStony Brook
  2. 2.College of Environmental Science and ForestryState University of New YorkSyracuse

Personalised recommendations