Advertisement

Estuaries

, Volume 28, Issue 5, pp 694–704 | Cite as

Effect of elevated CO2 on carbon pools and fluxes in a brackish marsh

  • Anne S. Marsh
  • Daniel P. Rasse
  • Bert G. Drake
  • J. Patrick MegonigalEmail author
Article

Abstract

The effects of long-term exposure to elevated atmospheric CO2 (ambient + 340 ppmv) on carbon cycling were investigated for two plant communities in a Chesapeake Bay brackish marsh, one dominated by the C3 sedgeSchoenplectus americanus and the other by the C4 grassSpartina patens. Elevated CO2 resulted in a significant increase in porewater concentrations of DIC at 30 cm depth (p < 0.1). The CO2 treatment also yielded increases in DOC (15 to 27%) and dissolved CH4 (12–18%) in the C3 marsh (means for several depths over the period of June 1998 and June 1999), but not at a significant level. Elevated CO2 increased mean ecosystem emissions of CO2 (34–393 g C m−2 yr−1) and CH4 (0.21–0.40 g C m−2 yr−1) in the C3 community, but the effects were only significant on certain dates. For example, CO2 enrichment increased C export to the atmosphere in the C3 community during one of two winter seasons measured (p = 0.09). In the C4 community, gross photosynthesis responded relatively weakly to elevated CO2 (18% increase, p > 0.1), and the concomitant effects on dissolved carbon concentrations, respiration, and CH4 emissions were small or absent. We concluded that elevated CO2 has the potential to increase dissolved inorganic carbon export to estuaries.

Keywords

Respiration Soil Respiration Ecosystem Respiration Brackish Marsh Carbon Dioxide Enrichment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Allen, A. S., J. A. Andrews, A. C. Finzi, R. Matamala, D. D. Richter, andW. H. Schlesinger. 2000. Effects of free-air CO2 enrichment (FACE) on belowground processes in aPinus taeda forest.Ecological Applications 10:437–448.Google Scholar
  2. Arp, W. J. 1991. Vegetation of a North American Salt marsh and elevated atmospheric carbon dioxide. Ph.D. Dissertation, Free University of Amsterdam, Amsterdam, The Netherlands.Google Scholar
  3. Atkin, O. K., J. R. Evans, M. C. Ball, H. Lambers, andT. L. Pons. 2000. Leaf respiration of snow gum in the light and dark. Interactions between temperature and irradiance.Plant Physiology 122:915–923.CrossRefGoogle Scholar
  4. Ball, A. S. andB. C. Drake. 1998. Stimulation of soil respiration by carbon dioxide enrichment of marsh vegetation.Soil Biology and Biochemistry 30:1203–1206.CrossRefGoogle Scholar
  5. Billings, S. A., S. M. Schaeffer, S. Zitzer, T. Charlet, S. D. Smith, andR. D. Evans. 2002. Alterations of nitrogen dynamics under elevated CO2 in an intact Mojave Desert ecosystem: Evidence from δ15N.Oecologia 131:463–467.CrossRefGoogle Scholar
  6. Cai, W. andY. Wang. 1998. The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia.Limnology and Oceanography 43:657–668.Google Scholar
  7. Cai, W., W. J. Wiebe, Y. Wang, andJ. E. Sheldon. 2000. Intertidal marsh as a source of dissolved inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern U.S..Limnology and Oceanography 45:1743–1752.Google Scholar
  8. Clair, T. A., J. M. Ehrman, andK. Higuchi. 1999. Changes in freshwater carbon exports from Canadian terrestrial basins to lakes and estuaries under a 2xCO2 atmospheric scenario.Global Biogeochemical Cycles 13:1091–1097.CrossRefGoogle Scholar
  9. Curtis, P. S. 1996. A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide.Plant, cell and Environment 19:127–137.CrossRefGoogle Scholar
  10. Curtis, P. S., L. M. Balduman, B. G. Drake, andD. F. Whigham. 1990. Elevated atmospheric CO2 effects on belowground processes in C3 and C4 estuarine marsh communities.Ecology 71:2001–2006.CrossRefGoogle Scholar
  11. Curtis, P. S., B. G. Drake, P. W. Leadley, W. J. Arp, andD. F. Whigham. 1989. Growth and senescence in plant communities exposed to elevated CO2 concentrations on an estuarine marsh.Oecologia 78:20–26.CrossRefGoogle Scholar
  12. Curtis, P. S., B. G. Drake, andD. F. Whigham. 1989b. Nitrogen and carbon dynamics in C3 and C4 estuarine marsh plants growth under elevated CO2 in situ.Oecologia 78:297–301.CrossRefGoogle Scholar
  13. Dacey, J. W. H., B. G. Drake, andM. J. Klug. 1994. Stimulation of methane emission by carbon dioxide enrichment of marsh vegetation.Nature 370:47–49.CrossRefGoogle Scholar
  14. Dakora, F. andB. G. Drake. 2000. Elevated CO2 stimulates associative N2 fixation in a C3 plant of the Chesapeake Bay wetland.Plant, Cell and Environment 23:943–953.CrossRefGoogle Scholar
  15. de Pury, D. G. G. andG. D. Farquhar. 1997. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models.Plant, Cell, and Environment 20:537–557.CrossRefGoogle Scholar
  16. Drake, B. G., M. S. Muehe, G. Peresta, M. Gonzâlez-Meler, andR. Matamala. 1996. Acclimation of photosynthesis, respiration, and ecosystem carbon flux of a wetland on Chesapeake Bay, Maryland to elevated atmospheric CO2 concentration.Plant and Soil 187:111–118.CrossRefGoogle Scholar
  17. Edwards, N. T. andR. J. Norby. 1999. Below-ground respiratory responses of sugar maple and red maple to atmospheric CO2 enrichment and elevated temperature.Plant and Soil 206:85–97.CrossRefGoogle Scholar
  18. Freeman, C., N. Fenner, N. J. Ostle, H. Kang, D. J. Dowrick, B. Reynolds, M. A. Lock, D. Sleep, S. Hughes, andJ. Hudson. 2004. Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels.Nature 430:195–198.CrossRefGoogle Scholar
  19. Hopkins, W. G. 1995. Introduction to Plant Physiology, 1st edition. John Wiley and Sons, Inc., New York.Google Scholar
  20. Hungate, B. A., E. A. Holland, R. B. Jackson, E. S. L. Chapin, H. A. Mooney, andC. B. Field. 1997. The fate of carbon in grasslands under carbon dioxide enrichment.Nature 388:576–579.CrossRefGoogle Scholar
  21. Ineson, P., P. A. Coward, andU. A. Hartwig. 1998. Soil gas fluxes of N2O, CH4, and CO2 beneathLolium perenne under elevated CO2: The Swiss free air carbon dioxide enrichment experiment.Plant and Soil 198:89–95.CrossRefGoogle Scholar
  22. Janke, S. 2001. Atmospheric CO2 concentration does not directly affect leaf respiration in bean or poplar.Plant, Cell and Environment 24:1139–1151.CrossRefGoogle Scholar
  23. Kang, H., C. Freeman, andT. W. Ashendon. 2001. Effects of elevated CO2 on fen peat biogeochemistry.The Science of the Total Environment 279:45–50.CrossRefGoogle Scholar
  24. Kirschbaum, M. U. F. andG. D. Farquhar. 1984. Temperature dependence of whole-leaf photosynthesis inEucalyptus pauciflora Sieb. Ex Spreng.Plant Physiology 11:519–538.Google Scholar
  25. Leadley, P. W. andB. G. Drake. 1992. Open top chambers for exposing plant canopies to elevated CO2 concentration and for measuring net gas exchange.Vegetatio 104/105:3–15.CrossRefGoogle Scholar
  26. Littell, R. C., G. A. Milliken, W. W. Stroup, andR. D. Wolfinger. 1996. SAS System for Mixed Models. SAS Institute, Cary, North Carolina.Google Scholar
  27. Lloyd, J. andJ. A. Taylor. 1994. On the temperature dependence of soil respiration.Functional Ecology 8:315–323.CrossRefGoogle Scholar
  28. Matamala, R. 1997. The nitrogen and carbon balance of plantsScirpus olneyi (C3) andSpartina pateus (C4) grown in the field at different atmospheric CO2 concentrations in the Chesapeake Bay. Ph.D. Dissertation, Universitat de Barcelona. Barcelona, Spain.Google Scholar
  29. Megonigal, J. P., M. E. Hines, andP. T. Visscher. 2004. Anaerobic metabolism: Linkages to trace gases and aerobic processes. p. 317–424.In W. H. Schlesinger (ed.), Biogeochemistry, Volume 8, Elsevier-Pergamon, Oxford, U.K.Google Scholar
  30. Megonigal, J. P. andW. H. Schlesinger. 1997. Enhanced CH4 emissions from a wetland soil exposed to elevated CO2.Biogeochemistry 37:77–88.CrossRefGoogle Scholar
  31. Megonigal, J. P., C. D. Vann, andA. A. Wolf. 2005. Flooding constraints on tree (Taxodium distichum) and herb growth responses to elevated CO2.Wetlands 25:230–238.CrossRefGoogle Scholar
  32. Neubauer, S. C., W. D. Miller, andI. C. Anderson. 2000. Carbon cycling in a tidal freshwater marsh ecosystem: A carbon gas flux study.Marine Ecology Progress Series 199:13–30.CrossRefGoogle Scholar
  33. Nyman, J. A., R. D. Delaune, S. R. Pezeshki, andW. H. Patrick, Jr. 1995. Organic matter fluxes and marsh stability in a rapidly submerging estuarine marsh.Estuaries 18:207–218.CrossRefGoogle Scholar
  34. Pregitzer, K. S., D. R. Zak, J. Maziasz, J. Deforest, P. S. Curtis, andJ. Lussenhop. 2000. Interactive effects of atmospheric CO2 and soil-N availability on fine roots ofPopulus tremuloides.Ecological Applications 10:18–33.Google Scholar
  35. Prior, S. A., H. A. Torbert, G. B. Runion, H. H. Rogers, C. W. Wood, B. A. Kimball, R. L. Lamorte, P. J. Pinter, andG. W. Wall. 1997. Free-air carbon dioxide enrichment of wheat: Soil carbon and nitrogen dynamics.Journal of Environmental Quality 26:1161–1166.Google Scholar
  36. Qualis, R. G., B. L. Haines, andW. T. Swank. 1991. Fluxes of dissolved organic nutrients and humic substances in a deciduous forest.Ecology 72:254–266.CrossRefGoogle Scholar
  37. Rasse, D. P., L. François, M. Aubiney, A. S. Kowalski, I. Vande Walle, E. Laitat, andJ. C. Gérard. 2001. Modelling short-term CO2 fluxes and long-term tree growth in temperate forests with ASPECTS.Ecological Modelling 141:35–52.CrossRefGoogle Scholar
  38. Rasse, D. P., J. Li, andB. G. Drake. 2003. Carbon dioxide assimilation by a wetland sedge canopy exposed to ambient and elevated CO2: Measurements and model analysis.Functional Ecology 17:222–230.CrossRefGoogle Scholar
  39. Rasse, D. P., G. Peresta, andB. G. Drake. 2005. Seventeen years of elevated CO2 exposure in a Chesapeake Bay wetland: Sustained but contrasting responses of plant growth and CO2 uptake.Global Change Biology 11:369–377.CrossRefGoogle Scholar
  40. Schlesinger, W. H. 1997. Biogeochemistry: An Analysis of Global Change. Academic Press, San Diego, California.Google Scholar
  41. Vann, C. D. 2000. Productivity and methane production in a future CO2-enriched atmosphere. M.S. Thesis, George Mason University, Fairfax, Virginia.Google Scholar
  42. Vann, C. D. andJ. P. Megonigal. 2003. Elevated CO2 and water depth regulation of methane emissions: Comparison of woody and non-woody wetland plant species.Biogeochemistry 63:117–134.CrossRefGoogle Scholar
  43. Vegetation/Ecosystem Modeling and Analysis Project (VEMAP) Members. 1995. Vegetation/ecosystem modeling and analysis project: Comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling.Global Biogeochemical Cycles 9:407–438.CrossRefGoogle Scholar
  44. Vose, J. M., K. J. Elliott, D. W. Johnson, R. F. Walker, M. G. Johnson, andD. T. Tingey. 1995. Effects of elevated CO2 and N fertilization on soil respiration from ponderosa pine (Pinus ponerosa) in open-top chambers.Canadian Journal of Forest Research 25:1243–1251.CrossRefGoogle Scholar
  45. Wang, Z. A. andW. Cai. 2004. Carbon dioxide degassing and inorganic carbon export from a marsh-dominated estuary (the Duplin River): A marsh CO2 pump.Limnology and Oceanography 49:341–354.Google Scholar
  46. Wetzei, R. G., P. G. Hatcher, andT. S. Bianchi. 1995. Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism.Limnology and Oceanography 40:1369–1380.CrossRefGoogle Scholar
  47. Williamson, C. E., P. J. Neale, G. Grad, H. J. De Lange, andB. R. Hargreaves. 2001. Beneficial and detrimental effects of UV on aquatic organisms: Implications of spectral variation.Ecological Applications 11:1843–1857.CrossRefGoogle Scholar

Copyright information

© Estuarine Research Federation 2005

Authors and Affiliations

  • Anne S. Marsh
    • 1
  • Daniel P. Rasse
    • 1
    • 2
  • Bert G. Drake
    • 1
  • J. Patrick Megonigal
    • 1
    Email author
  1. 1.Smithsonian Environmental Research CenterEdgewater
  2. 2.INA-PGInstitut National de la Recherche Agronomique (INRA)Thiverval-GrignonFrance

Personalised recommendations