, Volume 28, Issue 1, pp 3–27 | Cite as

Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean?

  • Alberto V. BorgesEmail author
Open Access


Annually integrated air-water CO2 flux data in 44 coastal environments were compiled from literature. Data were gathered in 8 major ecosystems (inner estuaries, outer estuaries, whole estuarine systems, mangroves, salt marshes, coral reefs, upwelling systems, and open continental shelves), and up-scaled in the first attempt to integrate air-water CO2 fluxes over the coastal ocean (26×106 km2), taking into account its geographical and ecological diversity. Air-water CO2 fluxes were then up-scaled in global ocean (362×106 km2) using the present estimates for the coastal ocean and those from Takahashi et al. (2002) for the open ocean (336×106 km2). If estuaries and salt marshes are not taken into consideration in the up-scaling, the coastal ocean behaves as a sink for atmospheric CO2(−1.17 mol C m−2 yr−1) and the uptake of atmospheric CO2 by the global ocean increases by 24% (−1.93 versus −1.56 Pg C yr−1). The inclusion of the coastal ocean increases the estimates of CO2 uptake by the global ocean by 57% for high latitude areas (−0.44 versus −0.28 Pg C yr−1) and by 15% for temperate latitude areas (−2.36 versus −2.06 Pg C yr−1) At subtropical and tropical latitudes, the contribution from the coastal ocean increases the CO2 emission to the atmosphere from the global oceam by 13% (0.87 versus 0.77 Pg C yr−1). If estuaries and salt marshes are taken into consideration in the upscaling, the coastal ocean behaves as a source for atmospheric CO2 (0.38 mol C m−2 yr−1) and the uptake of atmospheric CO2 from the global ocean decreases by 12% (−1.44 versus −1.56 Pg C yr−1) At high and subtropical and tropical latitudes, the coastal ocean behaves as a source for atmospheric CO2 but at temperate latitudes, it still behaves as a moderate CO2 sink. A rigorous up-scaling of air-water CO2 fluxes in the coastal ocean is hampered by the poorly constrained estimate of the surface area of inner estuaries. The present estimates clearly indicate the significance of this biogeochemically, highly active region of the biosphere in the global CO2 cycle.


Coral Reef Salt Marsh Continental Shelf Global Ocean Coastal Ocean 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Literature Cited

  1. Abril, G. andA. V. Borges. 2004. Carbon dioxide and methane emissions from estuaries, p. 187–207.In A. Tremblay, L. Varfalvy, C. Roehm, and M. Garneau (eds.), Greenhouse gases emissions from natural environments and hydroelectric reservoirs: Fluxes and processes. Springer, Berlin, Germany.Google Scholar
  2. Abril, G., M.-V. Commarieu, D. Maro, M. Fontugne, F. guérin, and H. Etcheber. 2004. A massive dissolved inorganic carbon release at spring tide in a highly turbid estuary. Geophysical Research Letters 31(L09316):doi:10.1029/2004GL019714.Google Scholar
  3. Abril, G., H. Etcheber, A. V. Borges, andM. Frankignoulle. 2000. Excess atmospheric carbon dioxide transported by rivers into the Scheldt estuary.Comptes Rendus de l'Académie des Sciences Série II Fascicule A—Sciences de la Terre et des Planètes 330:761–768.Google Scholar
  4. Abril, G., H. Etcheber, B. Delille, M. Frankignoulle, andA. V. Borges. 2003. Carbonate dissolution in the turbid and eutrophic Loire estuary.Marine Ecology-Progress Series 259:129–138.CrossRefGoogle Scholar
  5. Abril, G., E. Nogueira, H. Hetcheber, G. Cabeçadas, E. Lemaire, andM. J. Brogueira 2002. Behaviour of organic carbon in nine contrasting European estuaries.Estuarine Coastal and Shelf Science 54:241–262.CrossRefGoogle Scholar
  6. Allen, M. R. andW. J. Ingram. 2002. Constraints on future changes in climate and the hydrologic cycle.Nature 419:224–232.CrossRefGoogle Scholar
  7. Alongi, D. M. 1998. Coastal Ecosystem Processes. CRC Press, Boca Raton, Florida.Google Scholar
  8. Alongi, D. M. 2002. Present state and future of the world's mangrove forests.Environmental Conservation 29:331–349.CrossRefGoogle Scholar
  9. Álvarez-Salgado, X. A., S. Beloso, I. Joint, E. Nogueira, L. Chou, F. F. Perez, S. Groom, J. M. Cabanas, A. P. Rees, andM. Elskens. 2002. New production of the NW Iberian shelf during the upwelling season over the period 1982–1999.Deep-Sea Research Part I 49:1725–1739.CrossRefGoogle Scholar
  10. Álvarez-Salgado, X. A., M. D. Doval, A. V. Borges, I. Joint, M. Frankignoulle, E. M. S. Woodward, andF. G. Figueiras. 2001. Off-shelf fluxes of labile materials by an upwelling filament in the NW Iberian Upwelling System.Progress In Oceanography 51:321–337.CrossRefGoogle Scholar
  11. Álvarez-Salgado, X. A., F. G. Figueiras, F. F. Pérez, S. Groom, E. Nogueira, A. V. Borges, L. Chou, C. G. Castro, G. Moncoifff, A. F. Ríos, A. E. J. Miler, M. Frankignoulle, G. Savidge, andR. Wollast. 2003. the Portugal coastal counter current off NW Spain: New insights on its biogeochemical variability.Progress In Oceanography 56:281–321.CrossRefGoogle Scholar
  12. Álvarez-Salgado, X. A., G. Rosón, F. F. Pérez, andY. Pazos. 1993. Hydrographic variability off the rias Baixas (NW Spain) during the upwelling season.Journal of Geophysical Research 98:14,447–14,455.Google Scholar
  13. Anderson, L. G. andE. P. Jones 1985. Measurements of total alkalinity, calcium, and sulfate in natural sea ice.Journal of Geophysical Research 90:9194–9198.CrossRefGoogle Scholar
  14. Andersson A. J. andF. T. Mackenzie. 2004. Shallow-water oceans: A source or a sink of atmospheric CO2?Frontiers in Ecology and the Environment 2:348–353.Google Scholar
  15. Baker, A. C., C. J. Starger, T. R. McClanahan, andP. W. Glynn. 2004. Coral reefs: Corals' adaptive response to climate change.Nature 430:741.CrossRefGoogle Scholar
  16. Bakker, D. C. E., H. J. W. De Baar, andE. De Jong. 1999. The dependence on temperature and salinity of dissolved inorganic carbon in East Atlantic surface waters.Marine Chemistry 65:263–280.CrossRefGoogle Scholar
  17. Bakun, A. 1990. Global climate change and intensification of coastal ocean upwelling.Science 247:198–201.CrossRefGoogle Scholar
  18. Bates, N. R. 2001. Interannual variability of oceanic CO2 and biogeochemical properties in the Western North Atlantic subtropical gyre.Deep-Sea Research Part II 48:1507–1528.CrossRefGoogle Scholar
  19. Bates, N. R. 2002. Seasonal variability of the effect of coral reefs on seawater CO2 and air-sea CO2 exchange.Limnology and Oceanography 47:43–52.Google Scholar
  20. Bates, N. R., A. H. Knap, andA. F. Michaels. 1998. Contribution of hurricanes to local and global estimates of air-sea exchange of CO2.Nature 395:58–61.CrossRefGoogle Scholar
  21. Bates, N. R., L. Samuels, andL. Merlivat. 2001. Biogeochemical and physical factors influencing seawaterfCO2, and airsea CO2 exchange on the Bermuda coral reef.Limnology and Oceanography 46:833–846.Google Scholar
  22. Biswas, H., S. K. Mukhopadhyay, T. K. De, S. Sen, andT. K. Jana. 2004. Biogenic controls on the air-water carbon dioxide exchange in the Sundarban mangrove environment, northeast coast of Bay of Bengal, India.Limnology and Oceanography 49:95–101.Google Scholar
  23. Borges, A. V., B. Delillf, L.-S. Schiettecatte, F. Gazeau, G. Abril, andM. Frankignoulle. 2004a. Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames).Limnology and Oceanography 49:1630–1641.Google Scholar
  24. Borges, A. V., S. Djenidi, G. Lacroix, J. Théate, B. Delille, andM. Frankignoulle. 2003. Atmospheric CO2 flux from mangrove surrounding waters.Geophysical Research Letters 30(11):1558,-doi:10.1029/2003GL017143.CrossRefGoogle Scholar
  25. Borges, A. V. andM. Frankignoulle. 1999. Daily and seasonal variations of the partial pressure of CO2 in surface seawater along Belgian and southern Dutch coastal areas.Journal of Marine Systems 19:251–266.CrossRefGoogle Scholar
  26. Borges, A. V. andM. Frankignoulle. 2001. Short-term variations of the partial pressure of CO2 in surface waters of the Galician upwelling system.Progress In Oceanography 51:283–302.CrossRefGoogle Scholar
  27. Borges, A. V. andM. Frankignoulle. 2002a. Distribution and air-water exchange of carbon dioxide in the Scheldt plume off the Belgian coast.Biogeochemistry 59:41–67.CrossRefGoogle Scholar
  28. Borges, A. V. andM. Frankignoulle. 2002b. Distribution of surface carbon dioxide and air-sea exchange in the upwelling system off the Galician coast.Global Biogeochemical Cycles 16:art-1020.CrossRefGoogle Scholar
  29. Borges, A. V. andM. Frankignoulle. 2002c. Aspects of dissolved inorganic carbon dynamics in the upwelling system off the Galician coast.Journal of Marine Systems 32:181–198.CrossRefGoogle Scholar
  30. Borges, A. V. andM. Frankignoulle. 2003. Distribution of surface carbon dioxide and air-sea exchange in the English Channel and adjacent areas.Journal of Geophysical Research 108:3140.CrossRefGoogle Scholar
  31. Borges, A. V., J.-P. Vanderborght, L.-S. Schiettecatte, F. Gazeau, S. Ferron-Smith, B. Delille, andM. Frankignoulle. 2004b. Variability of the gas transfer velocity of CO2 in a macrotidal estuary (the Scheldt).Estuaries 27:593–603.CrossRefGoogle Scholar
  32. Bouillon, S., M. Frankignoulle, F. Dehairs, B. Velimirov, A. Eiler, G. Abril, H. Etcheber, andA. V. Borges. 2003. Inorganic and organic carbon biogeochemistry in the Gautami Godavari estuary (Andhra Pradesh, India) during pre-monsoon: The local impact of extensive mangrove forests.Global Biogeochemical Cycles 17(4):1114-doi:10.1029/2002GB002026.CrossRefGoogle Scholar
  33. Bouillon, S., T. Moens, N. Koedam, F. Dahdouh-Guebas, W. Baeyens, andF. Dehairs. 2004a. Variability in the origin of carbon substrates for bacterial communities in mangrove sediments.FEMS Microbiology Ecology 49:171–179.CrossRefGoogle Scholar
  34. Bouillon, S., T. Moens, I. Overmeer, N. Koedam, andF. Dehairs. 2004b. Resource utilization patterns, of epifauna from mangrove forests with contrasting inputs of local versus imported organic matter.Marine Ecology-Progress Series 278:77–88.CrossRefGoogle Scholar
  35. Brasse, S., M. Nellen, R. Seifert, andW. Michaelis. 2002. The carbon dioxide system in the Elbe estuary.Biogeochemistry 59:25–40.CrossRefGoogle Scholar
  36. Brasse S., A. Reimer, R. Seifert, andW. Michaelis. 1999. The influence of intertidal mudflats on the dissolved inorganic carbon and total alkalinity distribution in the German Bight, southeastern North Sea.Journal of Sea Research 42:93–103.CrossRefGoogle Scholar
  37. Breton, E., V. Rousseau, J.-Y. Parent, J. Ozer, A. Lefevbre, and C. Lancelot. 2004. Combined effect of Climate and Man on diatom/Phaecystis blooms in the eutrophicated Belgian coastal waters (Southern Bight of the North Sea). unpublished manuscript.Google Scholar
  38. Caffrey, J. M. 2004. Factors controlling net ecosystem metabolism in U.S. estuaries.Estuaries 27:90–101.Google Scholar
  39. Cai, W.-J. 2003. Riverine inorganic carbon flux and rate of biological uptake in the Mississippi River plume.Geophysical Research Letters 30(2):1032-doi:10.1029/2002GL016312.CrossRefGoogle Scholar
  40. Cai, W.-J., L. R. Pomeroy, M. A. Moran, andY. C. Wang. 1999. Oxygen and carbon dioxide mass balance for the estuarine-intertidal marsh complex of five rivers in the southeastern U.S.Limnology and Oceanography 44:639–649.Google Scholar
  41. Cai, W.-J. andY. Wang. 1998. The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia.Limnology and Oceanography 43:657–668.Google Scholar
  42. Cai, W.-J., Z. H. A. Wang, andY. C. Wang. 2003. The role of marsh-dominated heterotrophic continental margins in transport of CO2 between the atmosphere, the land-sea interface and the ocean.Geophysical Research Letters 30(16):1849-doi:10.1029/2003GL017633.CrossRefGoogle Scholar
  43. Cai, W.-J., W. J. Wiebe, Y. C. Wang, andJ. E. Sheldon. 2000. Intertidal marsh as a source of dissolved inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern U.S.Limnology and Oceanography 45:1743–1752.Google Scholar
  44. Cameron, W. M. andD. W. Pritchard. 1963. Estuaries, p. 306–324.In M. N. Hill (ed.), The Sea, Volume 2. John Wiley & Sons, New York.Google Scholar
  45. Carini, S., N. Weston, C. Hopkinson, J. Tucker, A. Giblin, andJ. Vallino. 1996. Gas exchange rates in the Parker River estuary, Massachusetts.Biological Bulletin 191:333–334.Google Scholar
  46. Chapman, V. J. 1977. Introduction, p. 1–29.In V. J. Chapman (ed.), Wet Coastal Ecosystems. Elsevier, Amsterdam, The Netherlands.Google Scholar
  47. Chapman, B., P. Siqueira, andA. Freeman. 2002. The JERS Amazon Multi-season Mapping Study (JAMMS): Observation strategies and data characteristics.International Journal of Remote Sensing 23:1427–1446.CrossRefGoogle Scholar
  48. Chavez, F. P., J. T. Pennington, C. G. Castro, J. P. Ryan, R. P. Michisaki, B. Schlining, P. Walz, K. R. Buck, A. McFadyen, andC. A. Collins. 2002. Biological and chemical consequences of the 1997–1998 El Niño in central California waters.Progress In Oceanography 54:205–232.CrossRefGoogle Scholar
  49. Chen, C. T. A. 1993. Carbonate chemistry of the wintertime Bering Sea marginal ice-zone.Continental Shelf Research 13:67–87.CrossRefGoogle Scholar
  50. Chen, C. T. A., K. K. Liu, andR. Macdonald 2003. Continental Margin Exchanges, p. 53–97.In M. J. R. Fasham (ed.), Ocean biogeochemistry: A synthesis of the Joint Global Ocean Flux Study (JGOFS). Springer-Verlag, Berlin, Germany.Google Scholar
  51. Chen, C. T. A. andS. L. Wang. 1999. Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf.Journal of Geophysical Research 104:20,675–20,686.Google Scholar
  52. Clark, C. D., W. T. Hiscock, F. J. Millero, G. Hitchcock, L. Brand, W. L. Miller, L. Ziolkowski, R. F. Chen, andR. G. Zika. 2004. CDOM distribution and CO2 production on the Southwest Florida Shelf.Marine Chemistry 89:145–167.CrossRefGoogle Scholar
  53. Codispoti, L. A., G. E. Friederich, andD. W. Hood. 1986. Variability in the inorganic carbon system over the southeastern Bering Sea shelf during spring 1980 and spring-summer 1981.Continental Shelf Research 5:133–160.CrossRefGoogle Scholar
  54. Cole, J. J. andN. F. Caraco. 2001. Carbon in catchments: Connecting terrestrial carbon losses with aquatic metabolism.Marine and Freshwater Research 52:101–110.CrossRefGoogle Scholar
  55. Cole, J. J., N. F. Caraco, G. W. Kling, andT. K. Kratz. 1994. Carbon dioxide supersaturation in the surface waters of lakes.Science 265:1568–1570.CrossRefGoogle Scholar
  56. Copin-Montégut, C. andB. Avril. 1995. Continuous pCO2 measurements in surface water of Northeastern tropical Atlantic.Tellus Series B 47:86–92.CrossRefGoogle Scholar
  57. Copin-Montégut, C. andP. Raimbault. 1994. The Peruvian upwelling near 15°S in August 1986. Results of continuous measurements of physical and chemical properties between 0 and 200 m depth.Deep-Sea Research Part I 41:439–467.CrossRefGoogle Scholar
  58. Coynel, A., H. Etcheber, G. Abril, E. Maneux, J. Dumas, and J.-E. Hurtrez. 2004. Contribution of small mountainous rivers to particulate organic carbon input in the Bay of Biscay.Biogeochemistry in press.Google Scholar
  59. Dai, A. andK. E. Trenberth 2002. Estimates of freshwater discharge from continents: Latitudinal and seasonal variations.Journal of Hydrometeorology 3:660–687.CrossRefGoogle Scholar
  60. DeGrandpre, M. D., G. J. Olbu, C. M. Beatty, andT. R. Hammar. 2002. Air-sea CO2 fluxes on the U.S. Middle Atlantic Bight.Deep-Sea Research Part II 49:4355–4367.CrossRefGoogle Scholar
  61. de Haas, H., T. C. E. van Weering, andH. de Stigter. 2002. Organic carbon in shelf seas: Sinks or sources, processes and products.Continental Shelf Research 22:691–717.CrossRefGoogle Scholar
  62. Delille, B., D. Dellille, M. Fiala, C. Prevost, andM. Frankignoulle. 2000. Seasonal changes of pCO2 over a subantarcticMacrocystis kelp bed.Polar Biology 23:706–716.CrossRefGoogle Scholar
  63. Delille B., J. Harlay, I. Zondervan, S. Jacquet, L. Chou, R. Wollast, R. G. J. Bellerby, M. Frankignoulle, A. V. Borges, U. Riebesell, and J.-P. Gattuso. 2004. Response of primary production and calcification to changes of pCO2. unpublished manuscript.Google Scholar
  64. Delille, D., G. Marty, M. Cansemi-Soullard, andM. Frankignoulle. 1997. Influence of subantarctic Macrocystis bed in diel changes of marine bacterioplankton and CO2 fluxes.Journal of Plankton Research 19:1251–1264.CrossRefGoogle Scholar
  65. Del Vecchio, R. andA. Subramaniam. 2004. Influence of the Amazon River on the surface optical properties of the western tropical North Atlantic Ocean.Journal of Geophysical Research 109:C11001-doi:10.1029/2004JC002503.CrossRefGoogle Scholar
  66. Diffenbaugh, N. S., M. A. Snyder, andL. C. Sloan. 2004. Could CO2-induced land-cover feedbacks alter near-shore upwelling regimes?Proceedings of the National Academy of Sciences of the United States of America 101:27–32.CrossRefGoogle Scholar
  67. Duarte, C. M. 2002. The future of seagrass meadows.Environmental Conservation 29:192–206.CrossRefGoogle Scholar
  68. Duarte, C. M., J. J. Middelburg, andN. Caraco 2004. Major role of marine vegetation on the oceanic carbon cycle.Biogeosciences Discussions 1:659–679.CrossRefGoogle Scholar
  69. Ducklow, H. W. andS. L. McAllister. 2004. The biogeochemistry of carbon dioxide in the coastal oceans, in press,In K. H. Brink and A. R. Robinson (eds.), The Global Coastal Ocean—Multiscale Interdisciplinary Processes, Volume 13. Harvard University Press, Cambridge, Massachusetts.Google Scholar
  70. Engel, A., I. Zondervan, K. Aerts, L. Beaufort, A Benthien, L. Chou, B. Delille, J.-P. Gattuso, J. Harlay, C. Heemann, L. Hoffmann, S. Jacquet, J. Nejstgaard, M.-D. Pizay, E. Rochelle-Newall, U. Schneider, A. Terbrueggen, and U. Riebesell. 2004. Testing the direct effect of CO2 concentration on a bloom of the coccolithophoridEmiliania huxleyi in mesocosm experiments.Limnology and Oceanography in press.Google Scholar
  71. Feely, R. A., J. Boutin, C. E. Cosca, Y. Dandonneau, J. Etcheto, H. H. Inoue, M. Ishii, C. Le Quéré, D. J. Mackey, M. McPhaden, N. Metzl, A. Poisson, andR. Wannikhof. 2002. Seasonal and interannual variability of CO2 in the equatorial Pacific.Deep-Sea Research Part II 49:2443–2469.CrossRefGoogle Scholar
  72. Fieldler, P. C. 2002. Environment change in the eastern tropical Pacific Ocean: Review of ENSO and decadal variability.Marine Ecology-Progress Series 244:265–283.CrossRefGoogle Scholar
  73. Frankignoulle, M., G. Abril, A. Borges, I. Bourge, C. Canon, B. Delille, E. Libert, andJ.-M. Théate. 1998. Carbon dioxide emission from European estuaries.Science 282:434–436.CrossRefGoogle Scholar
  74. Frankignoulle, M., R. Biondo, J.-M. Théate, andA. V. Borges. 2003. Carbon dioxide daily variations and atmospheric fluxes over the open waters of the Great Bahama Bank and Norman's Pond using a novel autonomous measuring device.Caribbean Journal of Science 39:257–264.Google Scholar
  75. Frankignoulle, M. andA. V. Borges. 2001. European continental shelf as a significant sink for atmospheric carbon dioxide.Global Biogeochemical Cycles 15:569–576.CrossRefGoogle Scholar
  76. Frankignoulle, M., C. Canon, andJ.-P. Gattuso. 1994. Marine calcification as a source of carbon dioxide: Positive feedback to increasing atmospheric CO2.Limnology and Oceanography 39:458–462.Google Scholar
  77. Frankignoulle, M., J.-P. Gattuso, R. Biondo, I. Bourge, G. Copin-Montégut, andM. Pichon. 1996. Carbon fluxes in coral reefs. II. Eulerian study of inorganic carbon dynamics and measurement of air-sea CO2 exchanges.Marine Ecology-Progress Series 145:123–132.CrossRefGoogle Scholar
  78. Friederich, G. E., P. M. Walz, M. G. Burczynski, andF. P. Chavez. 2002. Inorganic carbon in the central California upwelling system during the 1997–1999 El Niño-La Niña event.Progress In Oceanography 54:185–203.CrossRefGoogle Scholar
  79. Gattuso, J.-P., M. Frankignoulle, I. Bourge, S. Romaine, andR. W. Buddemeier. 1998b. Effect of calcium carbonate saturation of seawater on coral calcification.Global and Planetary Change 18:37–46.CrossRefGoogle Scholar
  80. Gattuso, J.-P., M. Frankignoulle, andS. V. Smith. 1999. Measurement of community metabolism and significance in the coral reef CO2 source-sink debate.Proceedings of the National Academy of Science of the United States of America 96:13,017–13,022.CrossRefGoogle Scholar
  81. Gattuso, J.-P., M. Frankignoulle, S. V. Smith, J. R. Ware, andR. Wollast. 1996. Coral reefs and carbon dioxide.Science 271:1298–1298.CrossRefGoogle Scholar
  82. Gattuso, J.-P., M. Frankignoulle, andR. Wollast. 1998a. Carbon and carbonate metabolism in coastal aquatic ecosystems.Annual Review Ecology Systematics 29:405–433.CrossRefGoogle Scholar
  83. Gattuso, J.-P., C. E. Payri, M. Pichon, B. Delesalle, andM. Frankignoulle. 1997. Primary production calcification, and air-sea CO2 fluxes of a macroalgal-dominated coral reef community (Moorea, French Polynesia).Journal of Phycology 33: 729–738.CrossRefGoogle Scholar
  84. Gattuso, J.-P., M. Pichon, B. Delesalle, andM. Frankignoulle. 1993. Community metabolism and air-sea CO2 fluxes in a coral reef ecosystem (Moorea, French Polynesia).Marine Ecology-Progress Series 96:259–267CrossRefGoogle Scholar
  85. Gazeau, F., J.-P. Gattuso, J.J. Middelburg, C. Barrón, C. M. Duarte, L.-S. Schiettecatte, N. Brion, M.-D. Pizay, M. Frankignoulle, and A.V. Borges. 2004a. Planktonic and whole system metabolism in a nutrient-rich estuary (The Scheldt estuary). unpublished manuscript.Google Scholar
  86. Gazeau, F., A. V. Borges, C. Barrón, C. M. Duarte, N. Iversen, J. J. Middelburg, B. Delille, M.-D. Pizay, M. Frankignoulle, and J.-P. Gattuso. 2004b. Net ecosystem metabolism in a micro-tidal estuary (Randers Fjord, Denmark): Evaluation of methods and interannual variability unpublished manuscript.Google Scholar
  87. Gazeau, F., C. M. Duarte, J.-P. Gattuso, C. Barrón, N. Navarro, S. Ruíz, Y. T. Prairie, M. Calleja, B. Delille, M. Frankignoulle, andA. V. Borges. 2004c. Whole-system metabolism and CO2 fluxes in a Mediterranean Bay dominated by seagrass beds (Palma Bay, NW Mediterranean).Biogeosciences Discussions 1:755–802.Google Scholar
  88. Ghosh, S., T. K. Jana, B. N. Singh, andA. Choudhury. 1987. Comparative study of carbon dioxide system in virgin and reclaimed mangrove waters of Sundarbans during freshet.Mahasagar: Bulletin of the National Institute of Oceanography 20:155–161.Google Scholar
  89. Gibson, J. A. E. andT. W. Trull. 1999. Annual cycle offCO2 under sea-ice and in open water in Prydz Bay, East Antarctica.Marine Chemistry 66:187–200.CrossRefGoogle Scholar
  90. Gleitz, M., M. R. v. d. Loeff, D. N. Thomas, G. S. Dieckmann, andF. J. Millero. 1995. Comparison of summer and winter in organic carbon, oxygen and nutrient concentrations in Antarctic sea ice brine.Marine Chemistry 51:81–91.CrossRefGoogle Scholar
  91. Gosink, T. A., J. G. Pearson, andJ. J. Kelley. 1976. Gas movement through sea ice.Nature 263:41–42.CrossRefGoogle Scholar
  92. Goyet, C., F. J. Millero, D. W. O'Sullivan, G. Eischeid, S. J. McCue, andR. G. J. Bellerby. 1998. Temporal variations of pCO2 in surface seawater of the Arabian sea in 1995.Deep-Sea Research Part I 45:609–623.CrossRefGoogle Scholar
  93. Gypens, N., C. Lancelot, andA. V. Borges. 2004. Carbon dynamics and CO2 air-sea exchanges in the eutrophicated coastal waters of the Southern Bight of the North Sea: A modelling study.Biogeosciences 1:561–589.Google Scholar
  94. Hoppema, J. M. J. 1991. The seasonal behaviour of carbon dioxide and oxygen in the coastal North Sea along the Netherlands.Netherlands Journal of Sea Research 28:167–179.CrossRefGoogle Scholar
  95. Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, andC. A. Johnson. 2001. Climate Change 2001: The Scientific Basis. Cambridge University Press, New York.Google Scholar
  96. Hughes, T. P., A. H. Baird, D. R. Bellwood, M. Card, S. R. Connolly, C. Folke, R. Grosberg, O. Hoegh-Guldberg, J. B. C. Jackson, J. Kleypas, J. M. Lough, P. Marshall, M. Nystrom, S. R. Palumbi, J. M. Pandolfi, B. Rosen, andJ. Roughgarden. 2003. Climate change, human impacts, and the resilience of coral reefs.Science 301:929–933.CrossRefGoogle Scholar
  97. Hunt, A. G. 1999. Understanding a possible correlation between El Niño occurrence frequency and global warming.Bulletin of the American Meteorological Society 80:297–300.Google Scholar
  98. Ianson, D. andS. E. Allen. 2002. A two-dimensional nitrogen and carbon flux model in a coastal upwelling region.Global Biogeochemical Cycles 16(1):1011 doi:10.1029/2001GB001451.CrossRefGoogle Scholar
  99. Ito, R. G., B. Schneider, and H. Thomas. 2004. Seasonal variability offCO2 in seawater from the Southwest subtropical Atlantic and adjacent continental shelf, The Ocean in a High CO2 World, An International Science Symposium, UNESCO, 10–12 May 2004, Paris, France.Google Scholar
  100. Jennerjahn, T. C. andV. Ittekkot. 2002. Relevance of mangroves for the production and deposition of organic matter along tropical continental margins.Naturwissenschaften 89:23–30.CrossRefGoogle Scholar
  101. Kaltin, S., L. G. Anderson, K. Olsson, A. Fransson, andM. Chierici. 2002. Uptake of atmospheric carbon dioxide in the Barents Sea.Journal of Marine Systems 38:31–45.CrossRefGoogle Scholar
  102. Kawahata, H., A. Suzuki, andK. Goto. 1999. Coral reefs as sources of atmospheric CO2—Spatial distribution ofPCO2 in Majuro Atoll.Geochemical Journal 33:295–303.Google Scholar
  103. Kayanne, H., A. Suzuki, andH. Saito. 1995. Diurnal changes in the partial pressure of carbon dioxide in coral reef water.Science 269:214–216.CrossRefGoogle Scholar
  104. Kell, R. G., L. M. Mayer, P. D. Quay, J. E. Richey, andJ. I. Hedges. 1997. Loss of organic matter from riverine particles in deltas.Geochimica et Cosmochimica Acta 61:1507–1511.CrossRefGoogle Scholar
  105. Kelley, J. J. andD. W. Hood. 1971a. Carbon dioxide in the Pacific Ocean and Bering Sea: Upwelling and mixing.Journal of Geophysical Research 76:745–753.CrossRefGoogle Scholar
  106. Kelley, J. J. andD. W. Hood. 1971b. Carbon dioxide in the surface water of the ice-covered Bering Sea.Nature 229:37–39.CrossRefGoogle Scholar
  107. Kelley, J. J., L. L. Longerich, andD. W. Hood. 1971. Effect of upwelling, mixing and high primary productivity on CO2 concentrations in surface waters of the Bering Sea.Journal of Geophysical Research 76:8687–8693.CrossRefGoogle Scholar
  108. Ketchum, B. H. 1983. Estuarine characteristics, p. 1–13.In B. H. Ketchum (ed.), Estuaries and enclosed seas. Elsevier, Amsterdam, The Netherlands.Google Scholar
  109. Kleypas, J. A., R. W. Buddemeier, D. Archer, J. P. Gattuso, C. Langdon, andB. N. Opdyke. 1999. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs.Science 284:118–120.CrossRefGoogle Scholar
  110. Körtzinger, A. 2003. A significant CO2 sink in the tropical Atlantic Ocean associated with the Amazon river plume.Geophysical Research Letters 30:2287-GL018841.CrossRefGoogle Scholar
  111. Körtzinger, A., J. C. Duinker, andL. Mintrop. 1997. Strong CO2 emissions from the Arabian Sea during South-West Monsoon.Geophysical Research Letters 24:1763–1766.CrossRefGoogle Scholar
  112. Kremer, J. N., A. Reischauer, andC. D'Avanzo. 2003. Estuary-specific variation in the air-water gas exchange coefficient for oxygen.Estuaries 26:829–836.Google Scholar
  113. Kukla, G. andJ. Gavin. 2004. Milankovitch climate reinforcements.Global and Planetary Change 40:27–48.CrossRefGoogle Scholar
  114. Kumar, M. D., S. W. A. Naqvi, M. D. George, andD. A. Jayakumar. 1996. A sink for atmospheric carbon dioxide in the northeast Indian Ocean.Journal of Geophysical Research 101: 18,121–18,125.Google Scholar
  115. Kuss, J., K. Nagel, andB. Schneider. 2004. Evidence from the Baltic Sea for an enhanced CO2 air-sea transfer velocity.Tellus Series B 56:175–182.CrossRefGoogle Scholar
  116. Lefèvre, N., G. Moore, J. Aiken, A. Watson, D. Cooper, andR. Ling. 1998. Variability of pCO2 in the tropical Atlantic in 1995.Journal of Geophysical Research 103:5623–5634.CrossRefGoogle Scholar
  117. Lendt, R., A. Hupe, V. Ittekkot, H. W. Bange, M. O. Andreae, H. Thomas, S. Al Habsi, andS. Rapsomanikis. 1999. Greenhouse gases in cold water filaments in the Arabian Sea during the southwest monsoon.Naturwissenschaften 86:489–491.CrossRefGoogle Scholar
  118. Lendt, R., H. Thomas, A. Hupe, andV. Ittekkot. 2003. Response of the near-surface carbonate system of the northwestern Arabian Sea to the southwest monsoon and related biological forcing.Journal of Geophysical Research 108 (C7):3222-doi:10.1029/2000JC000771.CrossRefGoogle Scholar
  119. Le Quéré, C., O. Aumont, L. Bopp, P. Bousquet, P. Ciais, R. Francey M. Heimann, C. D. Keeling, R. F. Keeling, H. Kheshgi, P. Peylin, S. C. Piper, I. C. Prentice, andP. J. Rayner. 2003. Two decades of ocean CO2 sink and variability.Tellus Series B 55:649–656.CrossRefGoogle Scholar
  120. Liss, P. S. andL. Merlivat. 1986. Air-sea exchange rates: introduction and synthesis, p. 113–118.In P. Buat-Ménard (ed.), The role of air-sea exchanges in geochemical cycling. Reidel, Dordrecht, The Netherlands.Google Scholar
  121. Liu, K. K., K. Iseki, andS.-Y. Chao. 2000. Continental margin carbon fluxes, p. 187–239.In R. B. Hansson, H. W. Ducklow, and J. G. Field (eds.), The Changing Ocean Carbon Cycle: A midterm synthesis of the Joint Global Ocean Flux Study. Cambridge University Press, Cambridge, U.K.Google Scholar
  122. Ludwig, W., J. L. Probst, andS. Kempe. 1996. Predicting the oceanic input of organic carbon by continental erosion.Global Biogeochemical Cycles 10:23–41.CrossRefGoogle Scholar
  123. Mackenzie, F. T. 1991. What is the importance of ocean margin processes in Global Change? p. 433–454.In R. F. C. Mantoura, J. M. Martin, and R. Wollast (eds.), Ocean Margin Processes in Global Change. Wiley, Chichester, U.K.Google Scholar
  124. Mackenzie, F. T., A. Andersson, A. Lerman, andL. M. Ver. 2004a. Boundary exchanges in the global coastal margin: Implications for the organic and inorganic carbon cycles, in press.In K. H. Brink and A. R. Robinson (eds.), The Global Coastal Ocean—Multiscale Interdisciplinary Processes, Volume 13. Harvard University Press, Cambridge, Massachusetts.Google Scholar
  125. Mackenzie, F. T., A. Lerman, andA. J. Andersson. 2004. Past and present of sediment and carbon biogeochemical cycling models.Biogeosciences 1:11–32.Google Scholar
  126. Mackenzie, F. T., L. M. B. Ver, andA. Lerman. 2000. Coastal-zone biogeochemical dynamics under global warming.International Geology Review 42:193–206.Google Scholar
  127. Mackenzie, F. T., L. M. Ver, andA. Lerman. 2002. Century-scale nitrogen and phosphorus controls of the carbon cycle.Chemical Geology 190:13–32.CrossRefGoogle Scholar
  128. Manabe, S., P. C. D. Milly, andR. Wetherald. 2004. Simulated long-term changes in river discharge and soil moisture due to global warming.Hydrological Sciences Journal-Journal des Sciences Hydrologiques 49:625–642.CrossRefGoogle Scholar
  129. McNeil, B.I., R. J. Matear, andD. J. Barnes. 2004. Coral reef calcification and climate change: The effect of ocean warming.Geophysical Research Letters 31:L22309-doi: 10.1029/2004GL021541.CrossRefGoogle Scholar
  130. Meybeck, M. 1993. Natural sources of C, N, P and S, p. 163–193.In R. Wollast, F. T. Mackenzie, and L. Chou (eds.), Interactions of C, N, P and S Biogeochemical Cycles. Springer-Verlag, Berlin, Germany.Google Scholar
  131. Meybeck, M., L. Laroche, H. H. Dürr, andJ. P. M. Syvitski. 2003. Global variability of daily suspended solids and their fluxes in rivers.Global and Planetary Change 39:65–93.CrossRefGoogle Scholar
  132. Middelburg, J. J., J. Nieuwenhuize, F. J. Slim, andB. Ohowa. 1996. Sediment biogeochemistry in an East African mangrove forest (Gazi Bay, Kenya).Biogeochemistry 34:133–155.CrossRefGoogle Scholar
  133. Millero, F. J., W. T. Hiscock, F. Huang, M. Roche, andJ. Z. Zhang. 2001. Seasonal variation of the carbonate system in Florida Bay.Bulletin of Marine Science 68:101–123.Google Scholar
  134. Milliman, J. D. 1991. Flux and fate of fluvial sediments and water in coastal seas, p. 69–90.In R. F. C. Mantoura, J.-M. Martin, and R. Wollast (eds.), Ocean margin processes in global change. John Wiley & Sons, Chichester, U.K.Google Scholar
  135. Milliman, J. D. 1993. Production and accumulation of calcium carbonate in the ocean: Budget of a non-steady state.Global Biogeochemical Cycles 7:927–957.CrossRefGoogle Scholar
  136. Morris, J. T. andG. J. Whiting. 1986. Emission of gaseous carbon dioxide from salt-marsh sediments and its relation to other carbon losses.Estuaries 9:9–19.CrossRefGoogle Scholar
  137. Mukhopadhyay, S. K., H. Biswas, T. K. De, S. Sen andT. K. Jana. 2002. Seasonal effects on the air-water carbon dioxide exchange in the Hooghly estuary, NE coast of Gulf of Bengal, India.Journal of Environmental Monitoring 4:549–552.CrossRefGoogle Scholar
  138. Murata, A and T. Takizawa. 2002. Impact of a coccolithophorid bloom on the CO2 system in surface waters of the eastern Bering Sea shelf.Geophysical Research Letters 29:Art. No. 1547.Google Scholar
  139. Neubauer, S. C. andI. C. Anderson. 2003. Transport of dissolved inorganic carbon from a tidal freshwater marsh to the York River estuary.Limnology and Oceanography 48:299–307.CrossRefGoogle Scholar
  140. Nightingale, P. D., G. Malin, C. S. Law, A. J. Watson, P. S. Liss, M. I. Liddicoat, J. Boutin, andR. C. Upstill-Goddard. 2000. In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers.Global Biogeochemical Cycles 14:373–387.CrossRefGoogle Scholar
  141. Ohde, S. andR. van Woesik. 1999. Carbon dioxide flux and metabolic processes of a coral reef, Okinawa.Bulletin of Marine Science 65:559–576.Google Scholar
  142. Oliver, M. J., S. Glenn, J. T. Kohut, A. J. Irwin, O. M. Schofield, M. A. Moline, andW. P. Bissett. 2004. Bioinformatic approaches for objective detection of water masses on continental shelves,Journal of Geophysical Research 109(C7):C07S04-doi:10.1029/2003JC002072.CrossRefGoogle Scholar
  143. Omar, A., T. Johannessen, S. Kaltin, andA. Olsen. 2003. Anthropogenic increase of oceanic pCO2 in the Barents Sea surface water.Journal of Geophysical Research 108(C12):3388-doi: 10.1029/2002JC001628.CrossRefGoogle Scholar
  144. Ovalle, A. R. C., C. E. Rezende, C. E. V. Carvalho, T. C. Jennerjahn, andV. Ittekkot. 1999. Biogeochemical characteristics of coastal waters adjacent to small river-mangrove systems, East Brazil.Geo-Marine Letters 19:179–185.CrossRefGoogle Scholar
  145. Ovalle, A. R. C., C. E. Rezende, L. D. Lacerda, andC. A. R. Silva. 1990. Factors affecting the hydrochemistry of a mangrove tidal creek, Sepetiba bay, Brazil.Estuarine, Coastal and Shelf Science 31:639–650.CrossRefGoogle Scholar
  146. Papadimitriou, S., H. Kennedy, G. Kattner, G. S. Dieckmann, andD. N. Thomas. 2004. Experimental evidence for carbonate precipitation and CO2 degassing during sea ice formation.Geochimica et Cosmochimica Acta 68:1749–1761.CrossRefGoogle Scholar
  147. Park, P. K., L. I. Gordon, S. W. Hager, andM. C. Cissell. 1969. Carbon dioxide partial pressure in the Columbia river.Science 166:867–868.CrossRefGoogle Scholar
  148. Pérez, F. F., A. F. Ríos, andG. Rosón. 1999 Sea surface carbon dioxide off the Iberian Peninsula (North Eastern Atlantic Ocean).Journal of Marine Systems 19:27–46.CrossRefGoogle Scholar
  149. Peterson, B. J., R. M. Holmes, J. W. McClelland, C. J. Vörösmarty, R. B. Lammers, A. I. Shiklomanov, I. A. Shiklomanov, andS. Rahmstorf. 2002. Increasing river discharge to the Arctic Ocean.Science 298:2171–2173.CrossRefGoogle Scholar
  150. Poisson, A. andC. T. A. Chen. 1987. Why is there little anthropogenic CO2 in the Antarctic bottom water.Deep-Sea Research Part A 34:1255–1275.CrossRefGoogle Scholar
  151. Rabouille, C., F. T. Mackenzie, andL. M. B. Ver. 2001. Influ ence of the human perturbation on carbon, nitrogen, and oxygen biogeochemical cycles in the global coastal ocean.Geochimica et Cosmochimica Acta 65:3615–3641.CrossRefGoogle Scholar
  152. Raymond, P. A., J. E. Bauer, andJ. J. Cole. 2000. Atmospheric CO2 evasion, dissolved inorganic carbon production, and net heterotrophy in the York River estuary.Limnology and Oceanography 45:1707–1717.Google Scholar
  153. Raymond, P. A. andJ. J. Cole. 2001. Gas exchange in rivers and estuaries: Choosing a gas transfer velocity.Estuaries 24:312–317.CrossRefGoogle Scholar
  154. Raymond, P. A. andJ. J. Cole. 2003. Increase in the export of alkalinity from North America's largest river.Science 301:88–91.CrossRefGoogle Scholar
  155. Reimer, A., S. Brasse, R. Doerffer, C. D. Dürselen, S. Kempe, W. Michaelis, H. J. Rick, andR. Seifert. 1999. Carbon cycling in the German Bight: An estimate of transformation processes and transport.Deutshe hydrographische Zeitschrift 51:311–327.Google Scholar
  156. Richey, J. E. 2004. Pathways of atmospheric CO2 through fluvial systems, p. 329–340.In C. B. Field and M. R. Raupach (eds.), The Global Carbon Cycle, Integrating Humans, Climate, and the Natural World. Island Press, Washington, D.C.Google Scholar
  157. Richey, J. E., J. I. Hedges, A. H. Devol, andP. Quay. 1990. Biogeochemistry of carbon in Amazon river.Limnology and Oceanography 35:352–371.Google Scholar
  158. Richey, J. E., J. M. Melack, A. K. Aufdenkampe, V. M. Ballester, andL. L. Hess. 2002. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2.Nature 416:617–620.CrossRefGoogle Scholar
  159. Riebesell, U. 2004. Effects of CO2 enrichment on marine phytoplankton.Journal of Oceanography 60:719–729.CrossRefGoogle Scholar
  160. Riebesell, U., I. Zondervan, B. Rost, P. D. Tortell, R. Zeebe, andF. M. M. Morel. 2000 Reduced calcification of marine plankton in response to increased atmospheric CO2.Nature 407:364–367.CrossRefGoogle Scholar
  161. Sabine, C. L., R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. R. Wallace, B. Tilbrook, F. J. Millero, T.-H. Peng, A. Kozyr, T. Ono, andA. F. Rios. 2004. The oceanic sink for anthropogenic CO2.Science 305:367–371.CrossRefGoogle Scholar
  162. Sabine, C. L., R. Wanninkhof, R. M. Key, C. Goyet, andF. J. Millero. 2000. Seasonal CO2 fluxes in the tropical and subtropical Indian Ocean.Marine Chemistry 72:22–53.CrossRefGoogle Scholar
  163. Sarma, V. V. S. S. 2003. Monthly variability in surface pCO2 and net air-sea CO2 flux in the Arabian Sea.Journal of Geophysical Research 108(C8):3255-doi:10.1029/2001JC001062.CrossRefGoogle Scholar
  164. Sarma, V. V. S. S., M. D. Kumar, andM. Manerikar. 2001. Emission of carbon dioxide from a tropical estuarine system, Goa, India.Geophysical Research Letters 28:1239–1242.CrossRefGoogle Scholar
  165. Schneider, B., G. Nausch, K. Nagel, andN. Wasmund. 2003. The surface water CO2 budget for the Baltic Proper: A new way to determine nitrogen fixation.Journal of Marine Systems 42:53–64.CrossRefGoogle Scholar
  166. Semiletov, I., A. Makshtas, S. I. Akasofu, andE. L. Andreas. 2004. Atmospheric CO2 balance: The role of Arctic sea ice.Geophysical Research Letters 31 (5):L05121-doi:10.1029/2003GL017996.CrossRefGoogle Scholar
  167. Short, F. T. andH. A. Neckles. 1999. The effects of global climate change on seagrasses.Aquatic Botany 63:169–196.CrossRefGoogle Scholar
  168. Simpson, J. J. 1984. On the exchange of oxygen and carbon dioxide between ocean and atmosphere in an eastern boundary current, p. 505–514.In W. Brutsaert and J. H. Jirka (eds.), Gas Transfer at Water Surfaces. D. Reidel, Dordrecht, The Netherlands.Google Scholar
  169. Simpson, J. J. andA. Zirino. 1980. Biological control of pH in the Peruvian coastal upwelling area.Deep-Sea Research Part A 27:733–744.CrossRefGoogle Scholar
  170. Smith, S. V. andJ. T. Hollibaugh. 1993. Coastal metabolism and the oceanic carbon balance.Reviews of Geophysics 31:75–89.CrossRefGoogle Scholar
  171. Smith, S. V., D. P. Swaney, L. Talaue-McManus, J. D. Bartley, P. T. Sandhei, C. J. McLaughlin, V. C. Dupra, C. J. Crossland, R. W. Buddemeier, B. A. Maxwell, andF. Wulff. 2003. Humans, hydrology, and the distribution of inorganic nutrient loading to the ocean.BioScience 53:235–245.CrossRefGoogle Scholar
  172. Snyder, M. A., L. C. Sloan, N. S. Diffenbaugh, andJ. L. Bell. 2003. Future climate change and upwelling in the California Current.Geophysical Research Letters 30(15):1823-doi:10.1029/2003GL017647.CrossRefGoogle Scholar
  173. Soetaert, K., P. M. J. Herman, J. J. Middelburg, C. Heip, C. L. Smith, P. Tett, andK. Wild-Allen. 2001. Numerical modelling of the shelf break ecosystem: Reproducing benthic and pelagic measurements.Deep-Sea Research Part II 48:3141–3177.CrossRefGoogle Scholar
  174. Soetaert, K., J. J. Middelburg, C. Heip, P. Meire, S. Van Damme, and T. Maris. 2004. Long-term change in dissolved inorganic nutrients in the heterotrophic Scheldt estuary (Belgium, the Netherlands).Limnology and Oceanography in press.Google Scholar
  175. Soluri, E. A. andV. A. Woodson. 1990. World vector shoreline.International Hydrographic Review 67:27–35.Google Scholar
  176. Suzuki, A. andH. Kawahata. 2003. Carbon budget of coral reef systems: An overview of observations in fringing reefs, barrier reefs and atolls in the Indo-Pacific regions.Tellus Series B 55: 428–444.CrossRefGoogle Scholar
  177. Suzuki, A., H. Kawahata, T. Ayukai, andK. Goto. 2001. The oceanic CO2 system and carbon budget in the Great Barrier Reef, Australia.Geophysical Research Letters 28:1243–1246.CrossRefGoogle Scholar
  178. Takahashi, T., A. Feely, R. F. Weiss, R. Wanninkhof, D. W. Chipman, andS. C. Sutherland. 1997. Global air-sea flux of CO2: An estimate based on measurements of sea-air pCO2 difference.Proceedings of the National Academy of Sciences of the United States of America 94:8292–8299.CrossRefGoogle Scholar
  179. Takahashi, T., S. C. Sutherland, R. A. Feely, andC. E. Cosca. 2003. Decadal variation of the surface water pCO2 in the western and central equatorial Pacific.Science 302:852–856.CrossRefGoogle Scholar
  180. Takahashi, T., S. C. Sutherland, C. Sweeney, A. Poisson, N. Metzl, B. Tilbrook, N. Bates, R. Wanninkhof, R. A. Feely, C. Sabine, J. Olafsson, andY. Nojiri. 2002. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects.Deep-Sea Research Part II 49:1601–1622.CrossRefGoogle Scholar
  181. Tans, P. P., I. Y. Fung, andT. Takahashi. 1990. Observational constraints on the global atmospheric CO2 budget.Science 247:1431–1438.CrossRefGoogle Scholar
  182. Ternon, J. F., C. Oudot, A. Dessier, andD. Diverres. 2000. A seasonal tropical sink for atmospheric CO2 in the Atlantic ocean: The role of the Amazon River discharge.Marine Chemistry 68:183–201.CrossRefGoogle Scholar
  183. Thomas, H., Y. Bozec, H. J. W. De Baar, K. Elkalay, M. Frankignoulle, L.-S. Schiettecatte, andA. V. Borges. 2004b. The Carbon budget of the North Sea.Biogeosciences Discussions 1:367–392.Google Scholar
  184. Thomas, H., Y. Bozec, K. Elkalay, andH. J. W. De Baar. 2004a. Enhanced open ocean storage of CO2 from shelf sea pumping.Science 304:1005–1008.CrossRefGoogle Scholar
  185. Thomas, H. andB. Schneider. 1999. The seasonal cycle of carbon dioxide in Baltic Sea surface waters.Journal of Marine Systems 22:53–67.CrossRefGoogle Scholar
  186. Torres, R., D. R. Turner, J. Rutllant, andN. Lefevre. 2003. Continued CO2 outgassing in an upwelling area off northern Chile during the development phase of El Niño 1997–1998 (July 1997).Journal of Geophysical Research 108(C10):3336-doi:10.1029/2000JC000569.CrossRefGoogle Scholar
  187. Torres, R., D. Turner, J. Rutilant, M. Sobarzo, T. Antezana, andH. E. Gonzalez. 2002. CO2 outgassing off central Chile (31–30°S) and northern Chile (24–23°S) during austral summer 1997: The effect of wind intensity on the upwelling and ventilation of CO2-rich waters.Deep-Sea Research Part I 49:1413–1429.CrossRefGoogle Scholar
  188. Torres, R., D. R. Turner, N. Silva, andJ. Rutllant. 1999. High short-term variability of CO2 fluxes during an upwelling event off the Chilean coast at 30°S.Deep-Sea Research Part I 46:1161–1179.CrossRefGoogle Scholar
  189. Tsunogai, S., S. Watanabe, andT. Sato. 1999. Is there a “continental shelf pump” for the absorption of atmospheric CO2?Tellus Series B 51:701–712.CrossRefGoogle Scholar
  190. van Bennekom, A. J. andF. J. Wetsteijn. 1990. The winter distribution of nutrients in the Southern Bight of the North Sea (1961–1978) and in the estuaries of the Scheldt and the Rhine/Meuse.Netherlands Journal of Sea Research 25:75–87.CrossRefGoogle Scholar
  191. van Geen, A., R. K. Takesue, J. Goddard, T. Takahashi, J. A. Barth, andR. L. Smith. 2000. Carbon and nutrient dynamics during coastal upwelling off Cape Blanco, Oregon.Deep-Sea Research Part II 47:975–1002.CrossRefGoogle Scholar
  192. Ver, L. M. B., F. T. Mackenzie, andA. Lerman 1999. Biogeochemical responses of the carbon cycle to natural and human perturbations: Past, present and future.American Journal of Science 299:762–801.CrossRefGoogle Scholar
  193. Vörösmarty, C. J., M. Meybeck, B. Fekete, K. Sharma, P. Green, andJ. P. M. Syvitski. 2003. Anthropogenic sediment retention: Major global impact from registered river impoundments.Global and Planetary Change 39:169–190.CrossRefGoogle Scholar
  194. Vörösmarty, C. J. andD. Sahagian. 2000. Anthropogenic disturbance of the terrestrial water cycle.BioScience 50:753–765.CrossRefGoogle Scholar
  195. Walsh, J. J. 1988. On the nature of continental shelves. Academic Press, San Diego, California.Google Scholar
  196. Walsh, J. J. andD. A. Dieterle. 1994. CO2 cycling in the coastal ocean. I—A numerical analysis of the southeastern Bering Sea with applications to the Chukchi Sea and the northern Gulf of Mexico.Progress In Oceanography 34:335–392.CrossRefGoogle Scholar
  197. Wang, S. L., C. T. A. Chen, G.-H. Hong, andC. S. Chung. 2000. Carbon dioxide and related parameters in the East China Sea.Continental Shelf Research 20:525–544.CrossRefGoogle Scholar
  198. Wang, Z. A. andW.-J. Cai. 2004. Carbon dioxide degassing and inorganic carbon export from a marsh-dominated estuary (the Duplin River): A marsh CO2 pumpLimnology and Oceanography 49:341–354.Google Scholar
  199. Wanninkhof, R. 1992. Relationship between wind speed and gas exchange over the ocean.Journal of Geophysical Research 97: 7373–7382.CrossRefGoogle Scholar
  200. Wanninkhof, R. andW. R. McGillis. 1999. A cubic relationship between air-sea CO2 exchange and wind speed.Geophysical Research Letters 26:1889–1892.CrossRefGoogle Scholar
  201. Ware, J. R., S. V. Smith, andM. L. Reaka-Kudla. 1992. Coral reefs: Sources or sinks of atmospheric CO2?Coral reefs 11:127–130.CrossRefGoogle Scholar
  202. Wolf-Gladrow, D. A., U. Riebesell, S. Burkhardt, andJ. Bijma. 1999. Direct effects of CO2 concentration on growth and isotopic composition of marine plankton.Tellus Series B 51: 461–476.CrossRefGoogle Scholar
  203. Wollast, R. 1983. Interactions in estuaries and coastal waters, p. 385–409.In B. Bolin and R. B. Cook (eds.), The Major Biogeochemical Cycles and Their Interactions. Wiley-Interscience, New York.Google Scholar
  204. Wollast, R. 1998. Evaluation and comparison of the global carbon cycle in the coastal zone and in the open ocean, p. 213–252.In K. H. Brink and A. R. Robinson (eds.), The Global Coastal Ocean, Volume 10, John Wiley & Sons, New York.Google Scholar
  205. Wollast, R. andL. Chou. 2001. The carbon cycle at the ocean margin in the northern Gulf of Biscay.Deep-Sea Research Part II 48:3265–3293.CrossRefGoogle Scholar
  206. Wollast, R. andF. T. Mackenzie. 1989. Global biogeochemical cycles and climate, p. 453–473.In A. Berger, S. Schneider, and J.-C. Duplessy (eds.), Climate and Geo-Sciences. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  207. Woodwell, G. M., P. H. Rich, and C. A. S. Hall. 1973. Carbon in estuaries, p. 221–240.In G. M. Woodwell and E. V. Pecan (eds.), Carbon and the biosphere. Springfield Virginia.Google Scholar
  208. Yager, P. L., D. W. R. Wallace, K. M. Johnson, W. O. Smith Jr.,P. J. Minnett, andJ. W. Deming. 1995. The Northeast Polynya as an atmospheric CO2 sink: A seasonal rectification hypothesis.Journal of Geophysical Research 100:4389–4398.CrossRefGoogle Scholar
  209. Yool, A. andM. J. R. Fasham. 2001. An examination of the “continental shelf pump” in an open ocean general circulation modelGlobal Biogeochemical Cycles 15:831–844.CrossRefGoogle Scholar
  210. Zappa, C. J., P. A. Raymond, E. A. Terray, andW. R. McGillis. 2003. Variation in Surface turbulence and the gas transfer velocity over a tidal cycle in a macro-tidal estuary.Estuaries 26: 1401–1415.Google Scholar
  211. Zondervan, I., B. Rost, andU. Riebesell. 2002. Effect of CO2 concentration on the PIC/POC ratio in the coccolithophoreEmiliania huxleyi grown under light-limiting conditions and different daylengths.Journal of Experimental Marine Biology and Ecology 272:55–70.CrossRefGoogle Scholar

Source of Unpublished Materials

  1. Seyler, F. Personal Communication. Laboratoire d'Etude des Mécanismes de Transfert en Géologie, 14 Avenue Edouard Belin, 31400 Toulouse, France.Google Scholar

Copyright information

© Estuarine Research Federation 2005

Authors and Affiliations

  1. 1.Institut de Physique (B5)Université de Liège, MARE, Unité d'Océanographie ChimiqueSart-TilmanBelgique

Personalised recommendations