Advertisement

Il Nuovo Cimento (1955-1965)

, Volume 18, Issue 3, pp 482–504 | Cite as

Cellular space-time and quantum field theory

Article

Summary

A simple cellular model of space-time is introduced which incorporates a fundamental length in a natural way. The usual concept of field quantities as functions of geometrical points is rejected in favour of the concept of field quantities as functionals of elementary cells. Consequently the usual field equations in the form of partial differential equations are replaced by corresponding partial difference equations. Subsequent quantization yields anS-matrix which is not vitiated by the presence of serious divergences. The basic space-time structure and theS-Matrix (which does not involve derivative coupling) are shown to be integral Lorentz covariant. The semi-convergence or asymptotic behaviour of theS-matrix series is established, and a meaningful Borel-sum of the « gross »S-matrix series is presented.

Riassunto

Si introduce un semplice modello cellulare dello spazio-tempo, comprendente in modo naturale una lunghezza fondamentale. Il concetto usuale delle quantità di campo come funzioni dei punti geometrici viene respinto a favore del concetto delle quantità di campo come funzionali delle celle elementari. Conseguentemente le usuali equazioni di campo sotto forma di equazioni differenziali parziali sono sostituite dalle corrispondenti equazioni alle differenze parziali. La successiva quantizzazione fornisce una matriceS che non è inficiata dalla presenza di divergenze notevoli. Si dimostra che la struttura fondamentale dello spazio-tempo e la matriceS (che non comporta accoppiamenti derivati) sono covarianti per trasformazioni « discrete » di Lorentz, si determina la semi-convergenza o il comportamento asintotico della serie della matriceS, e si presenta una significativa somma di Borel della « maggiorante » della serie della matriceS.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    N. Bohr andL. Rosenfeld:Kgl. Dan. Vidensk. Selsk., Mat.-Fys. Medd.,12, no. 8 (1933).Google Scholar
  2. (2).
    W. Heisenberg:Leipziger Berichte,86, 317 (1934).Google Scholar
  3. (3).
    E. C. G. Stückelberg:Phys. Rev.,81, 130 (1951).ADSCrossRefzbMATHGoogle Scholar
  4. (4).
    E. C. G. Stückelberg andT. A. Green:Helv. Phys. Acta,24, 153 (1951).zbMATHGoogle Scholar
  5. (5).
    E. Corinaldesi:Nuovo Cimento,8, 499 (1951);Suppl. Nuovo Cimento,10, 83 (1953).Google Scholar
  6. (6).
    W. Pauli:Meson Theory of Nuclear Forces (New York, 1946).Google Scholar
  7. (7).
    G. Chew:Phys. Rev.,94, 1748, 1755 (1954);95, 1669 (1954).MathSciNetADSCrossRefzbMATHGoogle Scholar
  8. (8).
    R. Hofstadter:Ann. Rev. Nucl. Sci.,7, 231 (1957).ADSCrossRefGoogle Scholar
  9. (9).
    D. R. Yennie, M. M. Lévy andD. G. Ravenhall:Rev. Mod. Phys.,29, 144 (1957).ADSCrossRefGoogle Scholar
  10. (10).
    W. Heisenberg:Zeits. Phys.,65, 4 (1930);Ann. d. Phys.,32, 20 (1938);Zeits. Phys.,120, 513, 673 (1942).ADSCrossRefzbMATHGoogle Scholar
  11. (11).
    V. Ambarzumian andD. Ivanenko:Zeits. Phys.,64, 563 (1930).ADSCrossRefGoogle Scholar
  12. (12).
    A. March:Zeits. Phys.,104, 93, 161 (1936);105, 620 (1937);106, 49, 291 (1937).ADSCrossRefGoogle Scholar
  13. (13).
    L. L. Whyte:Brit. Journ. Phil. Sci.,1, 303 (1950);Ann. Sci.,1, 20 (1954).MathSciNetGoogle Scholar
  14. (14).
    L. Silberstein: Univ. of Toronto Studies, Physics Ser. (1936).Google Scholar
  15. (15).
    H. Snyder:Phys. Rev.,71, 38 (1947);72, 68 (1948).ADSCrossRefzbMATHGoogle Scholar
  16. (16).
    A. Schild:Phys. Rev.,73, 414 (1948);Can. Journ. Math.,1, 29 (1949).MathSciNetADSCrossRefzbMATHGoogle Scholar
  17. (17).
    H. S. M. Coxeter andG. J. Whitrow:Proc. Roy. Soc., A201, 417 (1950).MathSciNetADSCrossRefGoogle Scholar
  18. (18).
    E. J. Hellund andK. Tanaka:Phys. Rev.,94, 191 (1954).MathSciNetADSCrossRefGoogle Scholar
  19. (19).
    V. Rojansky:Phys. Rev.,97, 507 (1955).MathSciNetADSCrossRefGoogle Scholar
  20. (20).
    E. L. Hill:Phys. Rev.,100, 1780 (1955).MathSciNetADSCrossRefzbMATHGoogle Scholar
  21. (21).
    G. Wataghin:Zeits. Phys.,88, 92 (1934);92, 547 (1935).ADSCrossRefGoogle Scholar
  22. (22).
    F. Bopp:Ann. d. Phys.,42, 573 (1942).MathSciNetGoogle Scholar
  23. (23).
    R. P. Feynman:Phys. Rev.,74, 939 (1948).MathSciNetADSCrossRefzbMATHGoogle Scholar
  24. (24).
    R. E. Peierls andH. McManus:Phys. Rev.,70, 795 (1948).Google Scholar
  25. (25).
    H. McManus:Proc. Roy. Soc., A195, 323 (1949).MathSciNetADSGoogle Scholar
  26. (26).
    C. Bloch:Kgl. Dan. Vidensk. Selsk., Mat.-Fys. Medd.,26, no. 1 (1950);27, no. 8 (1952).Google Scholar
  27. (27).
    J. Rayski:Phil. Mag.,42, 1289 (1951).MathSciNetCrossRefzbMATHGoogle Scholar
  28. (28).
    P. Kristensen andC. Møller:Kgl. Dan. Vidensk. Selsk., Mat.-Fys. Medd.,27, no. 7 (1952).Google Scholar
  29. (29).
    M. Chrétien andR. E. Peierls:Proc. Roy. Soc., A223, 468 (1954).ADSCrossRefGoogle Scholar
  30. (30).
    E. Arnous andW. Heitler:Nuovo Cimento,11, 443 (1959).CrossRefGoogle Scholar
  31. (31).
    E. Arnous, W. Heitler andY. Takahashi:Nuovo Cimento 16, 671 (1960).MathSciNetCrossRefzbMATHGoogle Scholar
  32. (32).
    M. A. Markov:Žurn. Ėksp. Teor. Fiz.,10, 1311 (1940).Google Scholar
  33. (33).
    H. Yukawa:Phys. Rev.,76, 300 (1949);77, 219, 849 (1950);80, 1047 (1950).ADSCrossRefzbMATHGoogle Scholar
  34. (34).
    A. Pais andG. E. Uhlenbeck:Phys. Rev.,79, 145 (1950).MathSciNetADSCrossRefzbMATHGoogle Scholar
  35. (35).
    O. Hara, T. Marumori, Y. Ohnuki andH. Shimodaira:Progr. Theor. Phys.,12, 177 (1954).MathSciNetADSCrossRefzbMATHGoogle Scholar
  36. (36).
    Cf. the simple review article byW. A. McKinley:Am. Journ. Phys.,20, 129 (1960).ADSCrossRefGoogle Scholar
  37. (37).
    W. R. Hamilton:Collected Mathematical Papers, vol.2 (Cambridge, 1940), p. 451.Google Scholar
  38. (38).
    R. Courant, K. Friedrichs andH. Lewy:Math. Ann.,100, 32 (1928).MathSciNetCrossRefzbMATHGoogle Scholar
  39. (39).
    B. T. Darling:Phys. Rev.,80, 460 (1951);92, 1547 (1953);L. I. Schiff:Phys. Rev.,92, 766 (1953).MathSciNetADSCrossRefGoogle Scholar
  40. (40).
    R. J. Duffin:Duke Math. Journ.,20, 234 (1953);23, 335 (1955).MathSciNetCrossRefGoogle Scholar
  41. (41).
    E. W. Montroll:Amer. Math. Month.,61, 7 (1954).MathSciNetCrossRefGoogle Scholar
  42. (42).
    G. Boole:Calculus of Finite Differences, 4th. ed. (New York, 1958).Google Scholar
  43. (43).
    C. Jordan:Calculus of Finite Differences, 2nd ed. (New York, 1950).Google Scholar
  44. (44).
    N. E. Nörlung:Vorlesungen über Differenzenrechnung (Ann Arbor, 1945).Google Scholar
  45. (46).
    W. Heisenberg andW. Pauli:Zeits. Phys.,56, 1 (1929).ADSCrossRefzbMATHGoogle Scholar
  46. (49).
    D. Judge, H. Shimodaira andY. Takahashi:Nuovo Cimento 16, 1139 (1900).MathSciNetCrossRefGoogle Scholar
  47. (50).
    D. Judge, H. Shimodaira andY. Takahashi:Proc. Roy. Irish Acad., Sect. A (to be published).Google Scholar
  48. (51).
    C. A. Hurst:Proc. Roy. Soc., A214, 44 (1952);Proc. Camb. Phil. Soc.,48, 625 (1952).MathSciNetADSCrossRefGoogle Scholar
  49. (52).
    F. J. Dyson:Phys. Rev.,85, 631 (1952).MathSciNetADSCrossRefzbMATHGoogle Scholar
  50. (53).
    S. Hori:Progr. Theor. Phys.,8, 569 (1952).MathSciNetADSCrossRefGoogle Scholar
  51. (54).
    R. J. Riddell:Phys. Rev.,91, 1243 (1953).MathSciNetADSCrossRefzbMATHGoogle Scholar
  52. (55).
    G. N. Watson:Quart. Journ. Math.,10, 266 (1939).ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1960

Authors and Affiliations

  • A. Das
    • 1
  1. 1.Dublin Institute for Advanced StudiesDublin

Personalised recommendations