Journal of Statistical Physics

, Volume 88, Issue 5–6, pp 1371–1386 | Cite as

Finite-N fluctuation formulas for random matrices

Short Communications

Abstract

For the Gaussian and Laguerre random matrix ensembles, the probability density function (p.d.f.) for the linear statistic Σ j N =1 (x j − 〈x〉) is computed exactly and shown to satisfy a central limit theorem asN → ∞. For the circular random matrix ensemble the p.d.f.’s for the statistics ½Σ j N =1 (θ jπ) and − Σ j N =1 log 2 |sinθ j/2| are calculated exactly by using a constant term identity from the theory of the Selberg integral, and are also shown to satisfy a central limit theorem asN → ∞.

Key words

Random matrices central limit theorem fluctuation formulas Toeplitz determinants Selberg integral 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Costin and J. L. Lebowitz,Phys. Rev. Lett. 75:69 (1995).ADSCrossRefGoogle Scholar
  2. 2.
    A. Soshnikov, Global level spacings distribution for large random matrices from classical compact groups, preprint.Google Scholar
  3. 3.
    F. J. Dyson, inChen Ning Yang, ed. S.-T. Yau (Internat. Press, Cambridge, MA, 1995), p. 131.Google Scholar
  4. 4.
    M. M. Fogler and B. I. Shklovskii,Phys. Rev. Lett. 74:3312 (1995).MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    K. Johansson, On fluctuations of random Hermitian matrices, preprint.Google Scholar
  6. 6.
    K. Johansson, On random matrices associated with compact classical groups, preprint.Google Scholar
  7. 7.
    E. L. Basor, Distribution functions for random variables for ensembles of positive Hermitian matrices, preprint.Google Scholar
  8. 8.
    T. H. Baker and P. J. Forrester, solv-int/9608004.Google Scholar
  9. 9.
    E. Brézin and Z. A. Zee,Nucl. Phys. B 402:613 (1993).ADSMATHCrossRefGoogle Scholar
  10. 10.
    C. W. J. Beenakker,Nucl. Phys. B 422, 515 (1994).ADSCrossRefGoogle Scholar
  11. 11.
    A. Alastuey and B. Janovici,J. Stat. Phys. 34:557 (1984).ADSCrossRefGoogle Scholar
  12. 12.
    M. E. Fisher and R. E. Hartwig,Adv. Chem. Phys. 15:333 (1968).CrossRefGoogle Scholar
  13. 13.
    A. Böttcher and B. Silbermann,Analysis of Toeplitz operators (Berlin, Akademie, 1989).Google Scholar
  14. 14.
    E. L. Basor and C. A. Tracy,Physica A 177:167 (1991).MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    W. G. Morris, Constant term identities for finite and affine root systems, Ph.D. thesis, University of Wisconsin, Madison (1982).Google Scholar
  16. 16.
    A. Selberg,Norsk Mat. Tids. 26:167 (1944).Google Scholar
  17. 17.
    E. C. Titchmarsh,Theory of Functions, p. 186 (Ocford University Press, London, 1939).MATHGoogle Scholar
  18. 18.
    E. Brézin, C. Itzykson, G. Parisi, and J. B. Zuber,Commun. Math. Phys. 59:35 (1978).ADSMATHCrossRefGoogle Scholar
  19. 19.
    P. J. Forrester,Nucl. Phys. B 435:421 (1995).MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    H. D. Politzer,Phys. Rev. B 40:11917 (1989).ADSCrossRefGoogle Scholar
  21. 21.
    B. Jancovici,J. Stat. Phys. 80:445 (1995).MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    G. Szegö,Orthogonal Polynomials (AMS, Providence RI, 1967).Google Scholar
  23. 23.
    P. J. Forrester,Mod. Phys. Lett. B 9:359 (1995).MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    P. J. Forrester,Physics Lett. A 163:121 (1992).MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    E. W. Barnes,Quarterly J. Pure Appl. Math. 31:264 (1900).MATHGoogle Scholar
  26. 26.
    K. Zyczkowski and M. Kus,J. Phys. A 27:4235 (1994).MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    Ph. Choquard, B. Piller, and R. Rentsch,J. Stat. Phys. 46:599 (1987).MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Ph. Choquard, B. Piller, and R. Rentsch,J. Stat. Phys. 43:197 (1986).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MelbourneParkvilleAustralia

Personalised recommendations