Journal of Statistical Physics

, Volume 88, Issue 5–6, pp 1371–1386

Finite-N fluctuation formulas for random matrices

Short Communications
  • 57 Downloads

Abstract

For the Gaussian and Laguerre random matrix ensembles, the probability density function (p.d.f.) for the linear statistic ΣjN=1 (xj − 〈x〉) is computed exactly and shown to satisfy a central limit theorem asN → ∞. For the circular random matrix ensemble the p.d.f.’s for the statistics ½ΣjN=1 (θjπ) and − ΣjN=1 log 2 |sinθj/2| are calculated exactly by using a constant term identity from the theory of the Selberg integral, and are also shown to satisfy a central limit theorem asN → ∞.

Key words

Random matrices central limit theorem fluctuation formulas Toeplitz determinants Selberg integral 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MelbourneParkvilleAustralia

Personalised recommendations