Il Nuovo Cimento A (1965-1970)

, Volume 109, Issue 3, pp 271–279 | Cite as

The helicity of the free electromagnetic field and its physical meaning



The notion of helicity for the free electromagnetic field is analysed. The generalized helicity is introduced which is a conserved quantity coinciding with the difference of the right and left circularly polarized photons composing the electromagnetic field. It seems that it completes the list of the zilch-type invariants found by Lipkin and Ragusa. The gauge-invariant expression for the energy of the free gravitational field is obtained which strongly resembles the well-known bilinear expression for the total number of photons composing the electromagnetic field.


11.10 - Field theory 


12.90 - Miscellaneous theoretical ideas and models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Landau L. D. andPeierls R.,Z. Phys.,62 (1930) 188.CrossRefADSGoogle Scholar
  2. [2]
    Zeldovich Ya. B.,Dokl. Sov. Acad. Sci.,163 (1965) 1359.Google Scholar
  3. [3]
    Bacry H.,Helv. Phys. Acta,67 (1994) 632.Google Scholar
  4. [4]
    Moffat H. K.,Nature,347 (1990) 367.CrossRefADSGoogle Scholar
  5. [5]
    Pfister H. andGekelman W.,Am. J. Phys.,59 (1991) 497.CrossRefADSGoogle Scholar
  6. [6]
    Afanasiev G. N.,J. Phys. A,27 (1994) 2143.MathSciNetCrossRefADSMATHGoogle Scholar
  7. [7]
    Ranada A. F.,Eur. J. Phys.,13 (1992) 70.MathSciNetCrossRefGoogle Scholar
  8. [8]
    Ranada A. F.,J. Phys. A,25 (1992) 1621.MathSciNetCrossRefADSGoogle Scholar
  9. [9]
    Strazev V. I. andTomilchik L. M.,Electrodynamics with a Magnetic Charge (Nauka and Tehnika, Minsk) 1975, in Russian.Google Scholar
  10. [10]
    Stratton J. A.,Electromagnetic Theory (McGraw-Hill, New York, N.Y.) 1975.Google Scholar
  11. [11]
    Afanasiev G. N.,J. Phys. A,26 (1993) 731.MathSciNetCrossRefADSGoogle Scholar
  12. [12]
    Khvorostenko N. P.,Izv. Vyss. Uchebn. Zaved., Fiz., no. 3 (1992) 24.Google Scholar
  13. [13]
    Evans M. andVigier J. P.,The Enigmatic Photon, Vol.1 (Kluwer, Dordrecht) 1994.CrossRefGoogle Scholar
  14. [14]
    Akhiezer A. I. andBerestetsky V. B.,Quantum Electrodynamics, 1st edition (Gostehteorizdat, Moscow) 1975.Google Scholar
  15. [15]
    Lipkin D. M.,J. Math. Phys.,5 (1964) 696.MathSciNetCrossRefADSMATHGoogle Scholar
  16. [16]
    Ragusa S.,Nuovo Cimento B,101 (1988) 121.MathSciNetCrossRefADSGoogle Scholar
  17. [17]
    Ragusa S.,Nuovo Cimento B,104 (1989) 117.CrossRefADSGoogle Scholar
  18. [18]
    Weinberg S. andWitten E.,Phys. Lett. B,96 (1980) 59.MathSciNetCrossRefADSGoogle Scholar
  19. [19]
    Schweber S. S.,An Introduction to Relativistic Quantum Fied Theory (Row, Peterson and Co., New York, N.Y.) 1961, Chapt. 5.Google Scholar
  20. [20]
    Jauch J. M. andRohrlich F.,The Theory of Photons and Electrons (Adison-Wesley Publ. Co., New York, N.Y.) 1955, Chapt. 2, Sect. 2.1.Google Scholar
  21. [21]
    Akhiezer A. I. andBerestetsky V. B.,Quantum Electrodynamics, 4st edition (Nauka, Moscow) 1981.Google Scholar
  22. [22]
    Bronstein M. P.,J. Exp. Theor. Phys.,6 (1936) 195.Google Scholar
  23. [23]
    Faddeev L. D.,Usp. Fiz. Nauk,136 (1992) 435.MathSciNetCrossRefADSGoogle Scholar
  24. [24]
    Weber J.,General Relativity and Gravitational Waves (New York, N.Y.) 1961.Google Scholar
  25. [25]
    Amaldi E. andPizzella G.,Search for the gravitational waves, inAstrofisica e cosmologia gravitazione, quanti e relatività (Giunti Barbera, Firenze) 1979.Google Scholar
  26. [26]
    Jefimenko O. D.,Causality, Electromagnetic Induction and Gravitation (Electret Scientific Company, Star City) 1992.Google Scholar

Copyright information

© Società Italiana di Fisica 1996

Authors and Affiliations

  1. 1.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubna, Moscow DistrictRussia
  2. 2.The Institute of Physics and TechnologyKharkovUkraine

Personalised recommendations