Advertisement

Il Nuovo Cimento A (1965-1970)

, Volume 45, Issue 3, pp 315–324 | Cite as

Parafermion representations of the lie-algebra chainO7G2SU3

  • F. Duimio
  • E. Zecchi
Article
  • 25 Downloads

Summary

The irreducible representations (IR) of theG2 algebra contained in the parafermion IR ofO7 are studied. Their reduction with respect to theSU3 subalgebra and formulae for the explicit calculation of matrix elements are given.

Парафермионные представления алгебры ЛиO7G2SU3

Реэюме

Исследуются ненриводимые представления алгебрыG2, содержашиеся в парафермионных неприводимых представлениях О,. Проводится редукция относительно субалгебрыSU3 и предлагаются формулы для явного вычисления матричных злементов.

Riassunto

Si studiano le rappresentazioni irriducibili dell’algebraG2 contenute nelle rappresentazioni parafermioniche dell’algebraO7 e la loro riduzione rispetto alla sottoalgebraSU3. Si danno formule per il calcolo esplicito delle matrici di tali rappresentazioni.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    H. S. Green:Phys. Rev.,90, 270 (1953).CrossRefADSzbMATHGoogle Scholar
  2. (2).
    C. Ryan andE. C. G. Sudarshan:Nucl. Phys.,47, 207 (1963).MathSciNetCrossRefGoogle Scholar
  3. (3).
    M. Günaydin andF. Gürsey:Phys. Rev. D,9, 3387 (1974);F. Gürsey:Kyoto Symposium on Mathematical Problems in Theoretical Physics, edited byH. Araki (Berlin, 1975);F. Gürsey andP. Sikivie:Phys. Rev. Lett.,36, 775 (1976);P. Ramond:Nucl. Phys.,126 B, 509 (1977).CrossRefADSGoogle Scholar
  4. (4).
    N. Jacobson:Exceptional Lie Algebras (New York, N. Y., 1971);M. Günaydin andF. Gürsey:Journ. Math. Phys.,14, 1651 (1973);P. Ramond:Nucl. Phys.,110 B, 214 (1976).Google Scholar
  5. (5).
    G. Racah:Group Theory and Spectroscopy (Princeton, N. J., 1951).Google Scholar
  6. (6).
    O. W. Greenberg andA. M. L. Messiah:Phys. Rev.,138, B 1155 (1965).Google Scholar
  7. (7).
    Y. Ohnuki andS. Kamefuchi:Ann. of Phys.,51, 337 (1969).CrossRefADSGoogle Scholar
  8. (8).
    J. G. Nagel andM. Moshinski:Journ. Math. Phys.,6, 627 (1965);F. Duimio:Nuovo Cimento,55 A, 750 (1968).CrossRefGoogle Scholar
  9. (9).
    I. M. Gel’fand andM. L. Zetlin:Dokl. Akad. Nauk USSR,71, 825 (1950);G. E. Baird andL. C. Biedenharn:Journ. Math. Phys.,4, 1128 (1963).zbMATHGoogle Scholar
  10. (10).
    I. M. Gel’fand, R. A. Minlos andZ. Ya. Shapiro:Representations of the Rotation and Lorentz Groups and Their Applications, Suppl. 1 (London, 1963).Google Scholar
  11. (11).
    R. E. Behrends, J. Dreitlin, C. Fronsdal andW. Lee:Rev. Mod. Phys.,34, 1 (1962).CrossRefADSzbMATHGoogle Scholar
  12. (12).
    A very interesting approach to the representation theory of the chainG 2SU 3 has recently been proposed byM. Perroud:Journ. Math. Phys.,17, 1998 (1976).MathSciNetCrossRefADSzbMATHGoogle Scholar
  13. (13).
    A. B. Govorkov:Ann. of Phys.,53, 349 (1969);Int. Journ. Theor. Phys.,7, 49 (1973);A. J. Bracken andH. S. Green:Journ. Math. Phys.,14, 1784 (1973);T. Palev:Ann. Inst. Poincaré,23 A, 49 (1975).CrossRefADSzbMATHGoogle Scholar

Copyright information

© Società Italiana di Fisica 1978

Authors and Affiliations

  • F. Duimio
    • 1
    • 2
  • E. Zecchi
    • 3
    • 4
  1. 1.Istituto di Fisica dell’UniversitàParma
  2. 2.Istituto Nazionale di Fisica NucleareSezione di MilanoItaly
  3. 3.Centre d’Etudes Nucléaires de GrenobleService des Basses TempératuresGrenoble
  4. 4.Scuola di Perfezionamento in Fisica dello Stato SolidoParma

Personalised recommendations