Advertisement

Journal of Genetics

, Volume 85, Issue 2, pp 123–131 | Cite as

Morphological, yield, cytological and molecular characterization of a bread wheat X tritordeum F1 hybrid

  • J. Lima-BritoEmail author
  • A. Carvalho
  • A. Martin
  • J. S. Heslop-Harrison
  • H. Guedes-Pinto
Research Article

Abstract

The morphological, yield, cytological and molecular characteristics of bread wheat X tritordeum F1 hybrids (2n =6x = 42; AABBDHch) and their parents were analysed. Morphologically, these hybrids resembled the wheat parent. They were slightly bigger than both parents, had more spikelets per spike, and tillered more profusely. The hybrids are self-fertile but a reduction of average values of yield parameters was observed. For the cytological approach we used a double-target fluorescencein situ hybridization performed with total genomic DNA fromHordeum chilense L. and the ribosomal sequence pTa71. This technique allowed us to confirm the hybrid nature and to analyse chromosome pairing in this material. Our results showed that the expected complete homologous pairing (14 bivalents plus 14 univalents) was only observed in 9.59% of the pollen mother cells (PMCs) analysed. Some PMCs presented autosyndetic pairing of Hch and A, B or D chromosomes. The average number of univalents was higher in the wheat genome (6.8) than in the Hch genome (5.4). The maximum number of univalents per PMC was 20. We only observed wheat multivalents (one per PMC) but the frequency of trivalents (0.08) was higher than that of quadrivalents (0.058). We amplified 50 RAPD bands polymorphic between the F1 hybrid and one of its parents, and 31 ISSR polymorphic bands. Both sets of markers proved to be reliable for DNA fingerprinting. The complementary use of morphological and yield analysis, molecular cytogenetic techniques and molecular markers allowed a more accurate evaluation and characterization of the hybrids analysed here.

Keywords

bread wheat X tritordeum hybrid chromosome pairing in situ hybridization ISSR morphology RAPD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akagi H., Yokozeki Y., Inagaki A., Nakamura A. and Fujimura T. 1996 A co-dominant DNA marker closely linked to the rice nuclear restorer gene,Rf-1, identified with inter-SSR fingerprinting.Genome 39, 1205–1209.PubMedCrossRefGoogle Scholar
  2. Anamthawat-Jónsson K. and Bödvarsdóttir S. K. 1998 Meiosis of wheat X lymegrass hybrids.Chromosome Res. 6, 339–343.PubMedCrossRefGoogle Scholar
  3. Anamthawat-Jónsson K. and Heslop-Harrison J. S. 1993 Isolation and characterization of genome-specific DNA sequences inTriticeae species.Mol. Gen. Genet. 240, 151–158.PubMedCrossRefGoogle Scholar
  4. Blair M. W., Panaud O. and McCouch S. R. 1999 ISSR amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryza sativa L.).Theor. Appl. Genet. 98, 780–792.CrossRefGoogle Scholar
  5. Bornet B. C., Muller F. P. and Branchard M. 2002 Highly informative nature of inter simple sequence repeat (ISSR) sequences amplified using triand tetra-nucleotide primers from DNA of cauliflower (Brassica oleracea var. ‘botrytus’ L.).Genome 45, 890–896.PubMedCrossRefGoogle Scholar
  6. Carvalho A., Guedes-Pinto H. and Lima-Brito J. 2003 Cytology and morphology of durum wheat X tritordeum F1 hybrids. InFrom biodiversity to genomics: breeding strategies for small grain cereals in the third millennium (ed. C. Marè, P. Faccioli and A. M. Stanca), pp. 150–152. EUCARPIA Cereal Section Meeting, Salsomaggiore, Italy (21–25 November 2002). Experimental Institute for Cereal Research, Italy.Google Scholar
  7. Carvalho A., Matos M., Lima-Brito J., Guedes-Pinto H. and Benito C. 2005 DNA fingerprint of F1 interspecific hybrids from theTriticeae tribe using ISSRs.Euphytica 143, 93–99.CrossRefGoogle Scholar
  8. Fedak G. 1992 Intergeneric hybrids withHordeum. InBarley: genetics, biochemistry, molecular biology and biotechnology (ed. P. R. Shewry), pp. 45–68. Alden Press, Oxford.Google Scholar
  9. Fernández M. E., Figueiras A. M. and Benito C. 2002 The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin.Theor. Appl. Genet. 104, 845–851.PubMedCrossRefGoogle Scholar
  10. Fernández-Calvin B., Benavente E. and Orellana J. 1995 Meiotic pairing in wheat-rye derivatives detected by genomicin situ hybridisation and C-banding a comparative analysis.Chromosoma 103, 554–558.PubMedGoogle Scholar
  11. Fernández-Escobar J. and Martin A. 1985 Morphology, cytology and fertility of a trigeneric hybrid from triticale X tritordeum. Z.Pflanzenzuecht. 95, 311–318.Google Scholar
  12. Gerlach W. L. and Bedbrook J. R. 1979 Cloning and characterization of ribosomal RNA genes from wheat and barley.Nucl. Acids Res. 7, 1869–1885.PubMedCrossRefGoogle Scholar
  13. Godwin I. D., Aitken E. A. B. and Smith L. W. 1997 Application of inter simple sequence repeat (ISSR) markers to plant genetics.Electrophoresis 18, 1524–1528.PubMedCrossRefGoogle Scholar
  14. Gupta P. K. and Priyadarshan P. M. 1982 Triticale: present status and future prospects.Adv. Genet. 21, 256–345.Google Scholar
  15. Hernández P. and Martín A. 2003 Los marcadores moleculares y la mejora genética vegetal: perspectivas y realidades. Proceedings of the Congreso de la Sociedad Española de Genética, San Lorenzo de El Escorial, Spain, pp. 23–27.Google Scholar
  16. Joshi S. P., Gupta V. S., Aaggarwal R. K., Ranjekar P. K. and Brar D. S. 2000 Genetic diversity and phylogenetic relationship as revealed by inter simple sequence repeat (ISSR) polymorphism in the genusOryza.Theor. Appl. Genet. 100, 1311–1320.CrossRefGoogle Scholar
  17. Kantety R. V., Zeng X. P., Bennetzen J. L. and Zehr B. E. 1995 Assessment of genetic diversity in Dent and Popcorn (Zea mays L.) inbred lines using inter-simple sequence repeat (ISSR) amplification.Mol. Breed. 1, 365–373.CrossRefGoogle Scholar
  18. Kaushik A., Saini N., Jain S., Rana P., Singh R. K. and Jain R. K. 2003 Genetic analysis of a CSR10 (indica) X Taraori Basmati F3 population segregating for salt tolerance using ISSR markers.Euphytica 134, 231–238.CrossRefGoogle Scholar
  19. Kojima T., Nagaoka T., Noda K. and Ogihara Y. 1998 Genetic linkage map of ISSR and RAPD markers in Einkorn wheat in relation to that of RFLP markers.Theor. Appl. Genet. 96, 37–45.CrossRefGoogle Scholar
  20. Lima-Brito J., Guedes-Pinto H., Harrison G. E. and HeslopHarrison J. S. 1996 Chromosome identification and nuclear architecture in triticale X tritordeum F1 hybrids.J. Exp. Bot. 47, 583–588.CrossRefGoogle Scholar
  21. Lima-Brito J., Guedes-Pinto H., Harrison G. E. and HeslopHarrison J. S. 1997 Molecular cytogenetic analysis of durum wheat X tritordeum hybrids.Genome 40, 362–369.CrossRefPubMedGoogle Scholar
  22. Lima-Brito J., Carvalho A., Guedes-Pinto H. and Heslop-Harrison J. S. 2002 Using triticale in the production of multigeneric hybrids-cytology, morphology and fertility of the AABBRHch hybrids. InTriticale topics, international edition (ed. R. Jessop), no. 18, pp. 22–31. International Triticale Association, Australia.Google Scholar
  23. Matos M., Pinto-Carnide O. and Benito C. 2001 Phylogenetic relationships among Portuguese rye based on isozyme, RAPD and ISSR markers.Hereditas 134, 229–236.PubMedCrossRefGoogle Scholar
  24. Martin, Cubero J. I. 1981 The use ofHordeum chilense in cereal breeding.Cereal Res. Commun.9, 317–323.Google Scholar
  25. Martín A. and Sánchez-Monge Laguna E. 1980 Effects of the 5B system on control of pairing inHordeum chilense XTriticum aestivum hybrids.Z. Pflanzenzuecht. 85, 122–127.Google Scholar
  26. Martin A., Martinez-Araque C., Rubiales D. and Ballesteros J. 1996 Tritordeum: triticale’s new brother cereal. InTriticale: today and tomorrow (ed. H. Guedes-Pinto, N. Darvey and V. P. Carnide), pp. 57–72. Kluwer, Dordrecht.Google Scholar
  27. Martín A., Cabrera A., Esteban E., Hernández P., Ramírez M. C. and Rubiales D. 1999 A fertile amphiploid between diploid wheat (Triticum tauschii) and crested wheatgrass (Agropyron cristatum).Genome 42, 519–524.PubMedCrossRefGoogle Scholar
  28. Nagaoka T. and Ogihara Y. 1997 Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers.Theor. Appl. Genet. 94, 597–602.CrossRefGoogle Scholar
  29. Ozkan H., Levy A. and Feldman M. 2001 Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group.Plant Cell 13, 1735–1747.PubMedCrossRefGoogle Scholar
  30. Pejic I., Ajmone-Marsan P., Morgante M., Kozumplick V., Castiglioni P., Taramino G. and Motto M. 1998 Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs and AFLPs.Theor. Appl. Genet. 97, 1248–1255.CrossRefGoogle Scholar
  31. Qian W., Ge S. and Hong D. Y. 2001 Genetic variation within and among populations of a wild riceOryza granulata from China detected by RAPD and ISSR markers.Theor. Appl. Genet. 102, 440–449.CrossRefGoogle Scholar
  32. Schwarzacher T., Anamthawat-Jónsson K., Harrison G. E., Islam A. K. M. R., Jia J. Z., Leitch A. R.et al. 1992 Genomicin situ hybridization to identify alien chromosomes and chromosome segments in wheat.Theor. Appl. Genet. 84, 778–786.CrossRefGoogle Scholar
  33. Stoinova J. 1994 Cytogenetic study of F1 hybrids obtained by crossing triticale (2n = 42) X tritordeum (2n = 42).Cereal Res. Commun. 22, 173–178.Google Scholar
  34. Tautz D. and Renz M. 1984 Simple sequences are ubiquitous repetitive components of eukaryotic genomes.Nucl. Acids Res. 12, 4127–4137.PubMedCrossRefGoogle Scholar
  35. Welsh J. and McClelland M. 1990 Fingerprinting genomes using PCR with arbitrary primers.Nucl. Acids Res. 18, 7213–7218.PubMedCrossRefGoogle Scholar
  36. Williams J. G. K., Kubelik A. R., Livak K. J., Rafalski J. A. and Tingey S. V. 1990 DNA polymorphisms amplified by arbitrary primers are useful as genetic markers.Nucl. Acids Res. 18, 6531–6535.PubMedCrossRefGoogle Scholar
  37. Zietkiewicz E., Rafalski A. and Labuda D. 1994 Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification.Genomics 20, 176–183.PubMedCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2006

Authors and Affiliations

  • J. Lima-Brito
    • 1
    Email author
  • A. Carvalho
    • 1
  • A. Martin
    • 2
  • J. S. Heslop-Harrison
    • 3
  • H. Guedes-Pinto
    • 1
  1. 1.Department of Genetics and BiotechnologyCGBICETA/University of TrásosMontes and Alto DouroVila RealPortugal
  2. 2.Instituto de Agricultura Sostenible (CSIC)CórdobaSpain
  3. 3.Department of BiologyUniversity of LeicesterLeicesterUK

Personalised recommendations