Il Nuovo Cimento A (1971-1996)

, Volume 14, Issue 2, pp 335–342 | Cite as

Pion production in high-energy proton-antiproton annihilation

  • M. Jacob
  • S. Nussinov


A simple annihilation model leads to a set of predictions for pion distributions with marked differences with those found in proton-proton collisions. In particular most pions should be produced with low (<2) centre-of-mass rapidity and their mean multiplicity should increase proportionally to the centre-of-mass energy.

Рождение пионов в процессе аннигиляции протона и антипротона при высоких знергиях


Простая модель аннигиляции даёт систему предскаэаний для распре-делений пионов, которые эаметно отличаются от распределений, полученных в соударениях протона с протоном. В частности, больщинство пионов должно рождаться с малой скоротью центра масс (< 2) и средняя множественность пионов должна воэрастать пропорционально знергии центра масс.


Un semplice modello di annichilamento porta ad un insieme di previsioni per le distribuzioni dei pioni, con notevoli differenze da quelle trovate nelle collisioni protoneprotone. In particolare, molti pioni dovrebbero essere prodotti con una bassa (<2) rapidità del centro di massa, e la loro molteplicità media dovrebbe crescere proportionalmente all’energia del centro di massa.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    R. Armenteros andB. French:High-Energy Physics, Vol.4, edited byE. H. S. Burhop (New York, 1969), p. 237.Google Scholar
  2. (2).
    D. Horn:Phys. Reports, to be published.Google Scholar
  3. (3).
    T. Fields, Y. Oren, D. S. Rhines andT. Whitmore: ANL/HEP 7223 (1972).Google Scholar
  4. (4).
    D. B. Smith: UCRL-20632 (1971);R. Panvini et al.: Brookhaven preprint (1972); Soviet French Collaboration: preprint (1972).Google Scholar
  5. (5).
    E. Berger, M. Jacob andR. Slansky:Correlations in high-energy production processes, to be published inPhys. Rev. Google Scholar
  6. (6).
    E. Flaminio, J. D. Hansen, D. R. O. Morrison andN. Tovey: CERN/HERA 70-3;G. Alexander, I. Bar-Nir, S. Dagan, A. Fridman, G. Gidal, J. Grunhaus, A. Levy andY. Oren:Nucl. Phys.,23 B, 557 (1970).Google Scholar
  7. (7).
    M. Jacob andR. Slansky:Phys. Lett.,37 B, 408 (1971);Phys. Rev. D,5, 1847 (1972).ADSCrossRefGoogle Scholar
  8. (8).
    W. Burdett et al.: Vanderbilt-Brookhaven preprint (1972).Google Scholar
  9. (10).
    L. G. Ratner, R. J. Ellis, G. Vannini, B. A. Babcock, A. D. Krisch andJ. B. Roberts:Phys. Rev. Lett.,27, 68 (1971).ADSCrossRefGoogle Scholar
  10. (12).
    Comparingσ A with a power ofp L (rather than ofs) corresponds to the common usage (see ref. (6)). For the available p-bp data and the choice of variables orp L makes a significant difference and √ A is much less constant than √p LσA. Since in annihilation processes all the available energys is converted into pion production we believe that the choice ofs is more natural. We note that had we used (p c.m.)2 σ A instead of A we would have obtained a function which would have had roughly the same variation over the region of interest.Google Scholar
  11. (14).
    Recently there have been several papers,e.g.,H. Goldberg: Northeastern preprint (1972);R. F. Amann: Syracuse preprint SU 4203 (1972); which have used rather successfully models of essentially the multibaryon Regge variety to explain many features of annihilation data. The arguments presented here suggest that at somewhat higher energies such models will be inadequate and in particular eq. (2) will hold.Google Scholar

Copyright information

© Società Italiana di Fisica 1973

Authors and Affiliations

  • M. Jacob
    • 1
  • S. Nussinov
    • 2
  1. 1.Theory DivisionCERNGeneva
  2. 2.Department of Physics and AstronomyTel-Aviv UniversityRamat Aviv

Personalised recommendations