Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 46, Issue 2, pp 392–419 | Cite as

Bell’s theorem and the different concepts of locality

  • P. H. Eberhard
Article

Summary

Four definitions of the principle of local causes, each of which, when applied to a theory, leads to a different mathematical property of the theoretical predictions, are considered and physical justifications given. The predictions of quantum theory are shown to contradict three of those four concepts of locality. Conclusions are drawn about the physical process and about the interpretations of quantum theory or any other theory that would provide the same predictions. Several inter-pretations are still possible.

Теоремв белла и различные концепции локальности

Резюме

Рассматриваются четыре определения принципа локальных причин, каждое из которых приводит к различным математическим свойствам теоретических предсказаний. Показывается, что предсказания квантовой теории противоречат трем из этих четырех концепций локальности. Делаются выводы о физическом процессе и об интерпретации квантовой теории или любой другой теории, которая давала бы те же предсказания. Оказываются возможными другие интепретации.

Riassunto

Si considerano quattro definizioni del principio di cause locali, ciascuna delle quali, quando applicata ad una teoria, porta a una diversa proprietà matematica delle predizioni teoriche, e si forniscono giustificazioni teoriche. Si mostra che le predizioni della teoria quantistica sono in contraddizione con tre di questi quattro concetti di località. Si traggono conclusioni riguardo i processi fisici e le interpretazioni della teoria quantistica o di qualsiasi altra teoria che fornisca le stesse predizioni. Sono ancora possibili molte interpretazioni.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    J. S. Bell:Physics,1, 195 (1964).Google Scholar
  2. (2).
    H. P. Stapp:Phys. Rev. D,3, 1303 (1971).ADSCrossRefGoogle Scholar
  3. (3).
    J. F. Clauser andM. A. Horne:Phys. Rev. D,10, 526 (1974).ADSCrossRefGoogle Scholar
  4. (4).
    J. S. Bell: Res Th 2053 CERN and communication at theVI Gift Conference, Jaca, June 2–7, 1975.Google Scholar
  5. (5).
    N. Herbert:Amer. Journ. Phys.,43, 315 (1975).ADSCrossRefGoogle Scholar
  6. (6).
    H. P. Stapp:Nuovo Cimento,40 B, 191 (1977).CrossRefGoogle Scholar
  7. (7).
    P. H. Eberhard:Nuovo Cimento,38 B, 75 (1977).CrossRefGoogle Scholar
  8. (8).
    P. A. Moldauer: submitted to be published (1977).Google Scholar
  9. (9).
    The Monte Carlo simulation is a technique to generate values of experimental results, statistically distributed like the theoretical probability distribution, using random numbers.Google Scholar
  10. (10).
    Property 3 would be satisfied if any one of the four domainsS(O, A, B) in fig. 2 were rotated by 90° about its center of gravity located between the two ellipses.Google Scholar
  11. (11).
    As in the time-dependent Boltzmann equations.Google Scholar
  12. (12).
    The description of the «process» or «mechanism» is meant to be an algorithm that could generate values of α and β according to the theoretical probability distribution. Of course, if the theory is not deterministic, the algorithm must use random numbers.Google Scholar
  13. (13).
    I owe toJ. S. Bell the idea that Monte Carlo simulation can easily demonstrate that determinism can be restored in quantum theory.J. S. Bell: private communication (July 1977). A different approach is taken byD. Bohm:Phys. Rev.,85, 166, 180 (1952).Google Scholar
  14. (14).
    For instance, in day-to-day life, if it is assumed that somebody’s decision would not depend on a particular set of circumstances, chosen by somebody else, it means that the first person’s decision would be the same whatever choice is made by the second one. However, there is no deterministic theory to predict the first person’s decision.Google Scholar
  15. (15).
    J. F. Clauser, M. A. Horne, A. Shimony andR. A. Holt Phys. Rev. Lett.,23, 80 (1969).ADSCrossRefGoogle Scholar
  16. (16).
    A. Einstein, B. Podolsky andW. Rosen:Phys. Rev.,47, 777 (1935).ADSCrossRefzbMATHGoogle Scholar
  17. (17).
    I owe toH. P. Stapp the idea of presenting the remaining possible interpretations of quantum theory in this way.H. P. Stapp: private communication (1974).Google Scholar
  18. (18).
    A. Aspect:Phys. Rev. D,14, 1944 (1976).ADSCrossRefGoogle Scholar
  19. (19).
    S. J. Freedman andJ. F. Clauser:Phys. Rev. Lett.,28, 938 (1972).ADSCrossRefGoogle Scholar
  20. (20).
    E. S. Fry andR. C. Thompson:Phys. Rev. Lett.,37, 465 (1976).ADSCrossRefGoogle Scholar
  21. (21).
    A. R. Wilson, J. Lowe andD. K. Butt:J. Phys. G.,2, 613 (1976).ADSCrossRefGoogle Scholar
  22. (22).
    For a review of such experiments, seeJ. F. Clauser andA. Shimony: LLL preprint UCRL-80745, Lawrence Livermore Laboratory, Livermore, Calif., submitted toRep. Prog. Phys. Google Scholar
  23. (23).
    For instance,P. H. Eberhard: CERN 72-1 (1972), unpublished.Google Scholar
  24. (24).
    For instance,P. H. Eberhard, R. D. Tripp, Y. Déclais, J. Séguinot, P. Baillon, C. Bricman, M. Ferro-Luzzi, J. M. Perreau andT. Ypdilantis:Phys. Lett.,53 B, 121 (1974);W. C. Carithers, J. H. Christenson, P. H. Eberhard, D. R. Nygren, T. Modis, T. P. Pun, E. L. Schwartz andH. Sticker:Phys. Rev. D,14, 290 (1976).CrossRefGoogle Scholar
  25. (25).
    H. P. Stapp: LBL 3837, Lawrence Berkeley Laboratory, Berkeley, Calif. (1975).Google Scholar
  26. (26).
    P. H. Eberhard: remark at theThinkshop on Physics, Experimental Quantum Mechanics, Erice, Sicily (1976); made in response to the paper presented byO. Costa de Beauregard.Google Scholar
  27. (27).
    E. P. Wigner:Symmetries and Reflections (Blomington, Ind., 1967).Google Scholar
  28. (28).
    For an extensive list of references, seeM. Jammer:The Philosophy of Quantum Mechanics (New York, N. Y., 1974).Google Scholar
  29. (29).
    O. Costa de Beauregard:Dialectica,19, 280 (1965).CrossRefGoogle Scholar
  30. (30).
    J. Von Neumann:Mathematical Foundations of Quantum Mechanics (Princeton, N. J., 1955).Google Scholar
  31. (31).
    A. M. Gleason:Journ. Math. Mech.,6, 885 (1957).MathSciNetzbMATHGoogle Scholar
  32. (32).
    J. S. Bell:Rev. Mod. Phys.,38, 447 (1966).ADSCrossRefzbMATHGoogle Scholar
  33. (33).
    For a general review, seeF. J. Belinfante:A Survey of Hidden Variables Theories (New York, N. Y., 1973).Google Scholar

Copyright information

© Società Italiana di Fisica 1978

Authors and Affiliations

  • P. H. Eberhard
    • 1
  1. 1.Lawrence Berkeley LaboratoryBerkeley

Personalised recommendations