Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 93, Issue 1, pp 36–42 | Cite as

Time-dependent cosmological term

  • O. Bertolami
Article

Summary

A Brans-Dicke theory is considered with a scalar-field-dependent cosmological term. Solutions of the field equations in a homogeneous and isotropic space-time are obtained and discussed.

PACS.98.80.Dr

Relativistic cosmology 

Космологический член, зависящий от времени

Резюме

Рассматривается теория Бранса-Дикка с космологческим членом, зависящим от скалярного поля. Получаются и обсуждаются рещения полевых уравнений в однородном и изотропном пространстве-времени.

Riassunto

Si considera una teoria di Brans-Dicke con un termine cosmologico dipendente da un campo scalare. Si ottengono e si discutono le soluzioni delle equazioni di campo in uno spazio-tempo omogeneo ed isotropo.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    H. J. Blome andW. Priester:Naturwissenchaften,71, S528 (1984);S. A. Bludman:Nature (London),308, 319 (1984).ADSCrossRefGoogle Scholar
  2. (2).
    M. S. Turner, G. Steigman andL. M. Krauss: Fermilab preprint 32-A/84.Google Scholar
  3. (3).
    A. H. Guth:Phys. Rev. D,23, 347 (1981).ADSCrossRefGoogle Scholar
  4. (4).
    For an up-dated review on inflationary models and related topics, including the cosmological constant problem, seeA. D. Linde:Rep. Prog. Phys.,47, 925 (1984).MathSciNetADSCrossRefGoogle Scholar
  5. (5).
    Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, byS. Weinberg (1972), Chapt. 15.Google Scholar
  6. (6).
    A. D. Linde:JETP Lett.,19, 5 (1974).MathSciNetGoogle Scholar
  7. (7).
    For a review seeE. S. Abers andB. W. Lee:Phys. Rep.,9, No. 1, 1 (1973).ADSCrossRefGoogle Scholar
  8. (8).
    See,e.g.,P. Langaker:Phys. Rep.,72, 185 (1981).ADSCrossRefGoogle Scholar
  9. (9).
    D. Lovelock:J. Math. Phys. (N. Y.),13, 874 (1972).MathSciNetADSCrossRefzbMATHGoogle Scholar
  10. (10).
    Theory and Experiments in Gravitational Physics, byC. Will (CUP, 1981).Google Scholar
  11. (11).
    C. Brans andR. Dicke:Phys. Rev.,124, No. 3, 925 (1961).MathSciNetADSCrossRefGoogle Scholar
  12. (12).
    Solar system data involving post Newtonian limit favour ω≳500, see ref. (10)Theory and Experiments in Gravitational Physics, byC. Will (CUP, 1981) andA. D. Reasemberg et al.: Astrophys. J. Lett.,234, L129 (1979); however measurements of the precession of Mercury perihelia and Sun's oblateness seen to be consistent with low coupling, see ref. (5)Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, byS. Weinberg (1972), Chapt. 8.Google Scholar
  13. (13).
    K. Uehara andC. W. Kim:Phys. Rev. D,26, 2575 (1982).MathSciNetADSCrossRefGoogle Scholar
  14. (14).
    M. Endo andT. Fukui:Gen. Rel. Grav.,8, 833 (1977).ADSCrossRefGoogle Scholar
  15. (15).
    A. D. Linde:Rep. Prog. Phys.,42, 391 (1979);T. W. B. Kibble:Phys. Rep.,67, No. 1, 183 (1980).ADSCrossRefzbMATHGoogle Scholar
  16. (16).
    O. Bertolami: to be published inFortschr. Phys. Google Scholar

Copyright information

© Società Italiana di Fisica 1986

Authors and Affiliations

  • O. Bertolami
    • 1
  1. 1.Theoretical Physics DepartmentOxfordEngland

Personalised recommendations