Il Nuovo Cimento B (1971-1996)

, Volume 99, Issue 2, pp 171–177 | Cite as

A Kerr-like solution of the Poincaré gauge field equations

  • J. D. McCrea
  • P. Baekler
  • M. Gürses
Article

Summary

By using a method recently proposed by Backler and Gürses, a solution for the vacuum Poincaré gauge field equations is found, with a Kerr-de Sitter metric and a torsion that tends to zero at spacelike infinity.

Keywrods

PACS. 04.20.Jb General relativity Solutions to equations 

Riassunto

Usando un metodo recentemente proposto da Baekler e Gürses, si trova una soluzione per le equazioni del campo di gauge di Poincaré nel vuoto, con una metrica di Kerr-de Sitter ed una torsione che tende a zero all’infinito di tipo spazio.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    P. Baekler, F. W. Hehl andE. W. Mielke: inProceedings of the II Marcel Grossmann Meeting on General Relativity, edited byR. Ruffini (North-Holland, Amsterdam, 1982), p. 413.Google Scholar
  2. (2).
    P. Baekler andE. W. Mielke:Phys. Lett. A,113, 471 (1986).MathSciNetADSCrossRefGoogle Scholar
  3. (3).
    E. W. Mielke:Geometrodynamics of Gauge Fields (Akademie-Verlag, Berlin, 1987), pp. 85–91.MATHGoogle Scholar
  4. (4).
    P. Baekler andM. Gürses:Lett. Math. Phys. (to appear).Google Scholar
  5. (5).
    M. Gürses:Phys. Lett. A,10, 388 (1984).CrossRefGoogle Scholar
  6. (6).
    J. F. Plebanski:Ann. Phys. (N. Y.),90, 196 (1975).MathSciNetADSCrossRefMATHGoogle Scholar
  7. (7).
    D. Kramer, H. Stephani, M. MacCallum andE. Herlt:Exact Solutions of Einstein’s Field Equations (Cambridge University Press, Cambridge, 1980), Chapt. 19.MATHGoogle Scholar
  8. (8).
    R. H. Boyer andR. W. Lindquist:J. Math. Phys. (N. Y.),8, 265 (1967).MathSciNetADSCrossRefMATHGoogle Scholar
  9. (9).
    A. C. Hearn:REDUCE User’s Manual (Rand Publication CP78, The Rand Corporation, Santa Monica, Cal., 1985).Google Scholar
  10. (10).
    E. Schrüper:EXCALC: A System for Doing Calculations in Modern Differential Geometry. User’s Manual (Rand Publication, The Rand Corporation, Santa Monica, Cal., 1985).Google Scholar
  11. (11).
    E. Schrüfer, F. W. Hehl andJ. D. McCrea:Gen. Rel. Grav.,19, 197 (1987).ADSCrossRefMATHGoogle Scholar
  12. (12).
    J. D. McCrea: inProceedings of the XIV International Conference on Differential Geometric Methods in Mathematical Physics, Salamanca, 1985, Lecture Notes in Mathematics, edited byA. Perez-Rendon andP. L. Garcia (Springer, Heidelberg, 1987), in press.Google Scholar
  13. (13).
    F. W. Hehl, J. Nitsch andP. von der Heyde: inGeneral Relativity and Gravitation. One Hundred Years after the Birth of Albert Einstein, Vol.1, edited byA. Held (Plenum Press, New York, N. Y., 1980), p. 329.Google Scholar
  14. (14).
    P. Baekler, F. W. Hehl andE. W. Mielke: inProceedings of the IV Marcel Grossmann Meeting on General Relativity, edited byR. Ruffini (Elsevier Science Publishers, Amsterdam, 1986), p. 277.Google Scholar
  15. (15).
    P. Baekler, M. Gürses, F. W. Hehl andJ. D. McCrea: in preparation.Google Scholar

Copyright information

© Società Italiana di Fisica 1987

Authors and Affiliations

  • J. D. McCrea
    • 1
  • P. Baekler
    • 2
  • M. Gürses
    • 3
  1. 1.Department of Mathematical PhysicsUniversity CollegeDublin 4Ireland
  2. 2.Institute for Theoretical PhysicsUniversity of CologneKöln 41, B.R.D.
  3. 3.Tübitak Research Institute for Basic SciencesGebze/KocaeliTurkey

Personalised recommendations