Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 37, Issue 2, pp 219–231 | Cite as

Evidence for the Earth gravitational shift by direct atomic-time-scale comparison

  • L. Briatore
  • S. Leschiutta
Article

Summary

On the basis of the height difference between the CNR cosmic-ray laboratory at Plateau Rosa, 3500 m, and Turin, 250 m above s.l., a direct measurement of the terrestrial gravitational shift has been made by the comparison of the time scales of two cesium beam atomic frequency standards of the Istituto Elettrotecnico Nazionale «Galileo Ferraris». The principle of equivalence predicts the effect Δt/t=−ΔU/c 2 =3.54·10−13, corresponding to the gain of the standard at mountain altitudes Δt/t=30.6 ns/d. The results Δt/t=(33.8±6.8) ns/d and Δt/t=(36.5±5.8) ns/d, derived with two independent operating criteria, have been obtained from 1584 h of actual measurement, with reference to an atomic time scale whose linearity was continuously and carefully tested. The results are discussed in terms of the current gravitational theories and in view of future experimental researches, which will be permitted by the advancements of the metrology of time.

Подтверждение земного гравитационного сдвига с помощью прямого сравнения масштабов атомных времен

Резюме

На основе высотной разности между лабораториями космических лучей Национального Центра Исследований на Плато Роза, 3500 м, и в Турине, 250 м над уровнем моря, было проведено прямое измерение земного гравитационного сдвига, посредством сравнения временных шкал двух стандартов частот атомов цезия Национального Института Электроники «Галилео Феррарис». Принцип эквивалентности предсказывает величину Δt/t=−ΔU/c2=3.54·10−13, соответствующую приращению стандарта на высотах Δt/t=30.6 ns/d. С помощью двух независимых критериев в течение 1584 ч измерений получены следующие результаты Δt/t=(33.8±6.8) ns/d и Δt/t=(36.5±5.8) ns/d. Полученные результаты обсуждаются в терминах существующих гравитационных теорий и в связи с будущими экспериментальными поисками, которые будут способствовать прогрессу метрологии времени.

Riassunto

Operando sul dislivello fra il laboratorio di fisica cosmica del CNR di Plateau Rosa, 3500 m, e Torino, 250 m s.m., si è ottenuta la misurazione diretta dello spostamento gravitazionale terrestre dal confronto delle scale temporali di due campioni atomici di frequenza al cesio dell'Istituto Elettrotecnico Nazionale «Galileo Ferraris». Il principio di equivalenza prevede l'effetto Δt/t=−ΔU/c2=3.54·10−13, corrispondente all'anticipo Δt/t=30.6 ns/d del campione in quota. Da 1584 h di misura effettiva e con due metodi operativi indipendenti sono stati ottenuti i risultati Δt/t=(33.8±6.8) ns/d e Δt/t=(36.5±5.8) ns/d, con riferimento a una scala di tempo atomico continuamente controllata. Si discutono i risultati nel contesto delle attuali teorie della gravitazione e in vista di futuri avanzamenti della metrologia del tempo.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    L. Briatore andS. Leschiutta:Lett. Nuovo Cimento,15, 203 (1976), and a letter in press.ADSCrossRefGoogle Scholar
  2. (2).
    G. Rovera:Alta Frequenza,41, 822 (1972).Google Scholar
  3. (3).
    J. Tolman, V. Ptaček, A. Souček andR. Stecher:IEEE Trans., IM19, 247 (1967).Google Scholar
  4. (4).
    A. Raccin:Alta Frequenza,39, 741 (1970).Google Scholar
  5. (5).
    J. E. Lavery:Proc. PTTI,4, 168 (1972).Google Scholar
  6. (6).
    H. Hellwig:Metrologia,6, 118 (1970).ADSCrossRefGoogle Scholar
  7. (7).
    A. Einstein:Jahrb. Radioakt. u. Elektronik,4, 441 (1907);Ann. d. Phys.,35, 898 (1911);S. B. Preuss. Akad. Wiss., 831 (1915);Ann. Phys. Lpz.,49, 760 (1916).Google Scholar
  8. (8).
    J. Lense andH. Thirring:Phys. Zeits.,19, 156 (1918);G. M. Clemence:Rev. Mod. Phys.,19, 361 (1947);Astron. Papers,13-5, 367 (1964);J. J. Gilvary:Publ. Astron. Soc. Pacific,65, 173 (1953);Phys. Rev.,89, 1046 (1953);Nature,183, 666 (1959);L. La Paz:Publ. Astron. Soc. Pacific,66, 13 (1954);M. F. Subbotin:Astron. Žurn.,33, 251 (1956);V. L. Ginzburg:Žurn. Ėksp. Teor. Fiz.,30, 213 (1956);Usp. Fiz. Nauk,59, 11 (1956);63, 119 (1957);Fortschr. Phys.,5, 16 (1957);W. A. Brumberg:Bull. Inst. Teor. Astr.,6–10, 733 (1958);N. S. Kalitzin:Nuovo Cimento,9, 365 (1958).zbMATHGoogle Scholar
  9. (9).
    J. Soldner:Ann. Phys. Lpz.,65, 593 (1921);S. I. Vavilov:Experimental Bases of the Theory of Relativity (Moscow, 1928);G. Van Biesbroeck:Astron. Journ.,55, 49 (1950);58, 57 (1953);P. P. Parenago: inStellar Astronomy (Moscow, 1954);A. A. Mihailov:Astron. Žurn.,33, 912 (1956);G. W. Skrotzky:Dokl. Akad. Nauk,114, 73 (1957);H. V. Klauber:Vistas in Astronomy,3, 147 (1960).ADSCrossRefzbMATHGoogle Scholar
  10. (10).
    A. Perot:Compt. Rend.,171, 229 (1920);L. Grebe:Phys. Zeits,21, 662 (1920);Zeits. Phys.,4, 105 (1921);C. E. St. John:Astrophys. Journ.,67, 93 (1928);E. Freundlich:Phys. Zeits.,16, 115 (1915);20, 561 (1919);H. von Seeliger:Astr. Nachr.,202, 83 (1916);J. W. Brault:Thesis (Princeton University, N. J., 1962; unpublished);J. E. Blamont andF. Roddier:Phys. Rev. Lett.,7, 437 (1961);F. Roddier:Ann. Astrophys.,28, 463 (1965);J. L. Snider:Phys. Rev. Lett.,28, 853 (1972).Google Scholar
  11. (11).
    W. S. Adams:The Observatory,48;Proc. Amer. Acad. Sci. (1925).Google Scholar
  12. (12).
    Publ. Astron. Soc. Pacific,33 (1937);V. G. Fessenkov:Trans. Intern. Astron. Un.,8, 681 (1952).Google Scholar
  13. (13).
    R. V. Pound andG. A. Rebka jr.:Phys. Rev. Lett.,4, 337 (1960);R. V. Pound andJ. L. Snider:Phys. Rev. Lett.,13, 539 (1964);Phys. Rev.,140, B 788 (1965).ADSCrossRefGoogle Scholar
  14. (14).
    J. C. Hafele andR. E. Keating:Science,177, 166 (1972).ADSCrossRefGoogle Scholar
  15. (15).
    R. V. Eötvös, D. Pekar andE. Fekete:Ann. d. Phys.,68, 11 (1922).CrossRefGoogle Scholar
  16. (16).
    P. G. Roll, R. Krotkov andR. H. Dicke:Ann. of Phys.,26, 442 (1964).MathSciNetADSCrossRefzbMATHGoogle Scholar
  17. (17).
    V. B. Braginsky andV. I. Panov:Žurn. Éksp. Teor. Fiz.,61, 875 (1971).Google Scholar
  18. (18).
    L. I. Schiff:Amer. Journ. Phys.,28, 340 (1960);A. Schild: inEvidence for Gravitational Theories, edited byC. Møller (New York, N. Y., 1962);R. H. Dicke: inRelativity, Groups and Topology (New York, N. Y., 1963);H. Y. Chiu andW. F. Hoffmann, editors, andR. H. Dicke: inGravitation and Relativity (New York, N. Y., 1964);K. S. Thorne andC. M. Will:Astrophys. Journ.,163, 611 (1971);S. Weinberg:Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (New York, N. Y., 1972).MathSciNetADSCrossRefGoogle Scholar
  19. (19).
    For details seeD. R. Brill andJ. Wheeler:Rev. Mod. Phys.,29, 465 (1957);L. I. Schiff:Amer. Journ. Phys.,28, 340 (1960);R. H. Dicke:Amer. Journ. Phys.,28, 344 (1960);J. N. Bahcall andM. Schmidt:Phys. Rev. Lett.,18, 1294 (1967);K. S. Thorne, C. M. Will andW. T. Ni:Theoretical Framework for Testing Relativistic Gravity (Pasadena, Cal., 1971);K. S. Thorne, D. L. Lee andA. P. Lightman:Phys. Rev. D,7, 3563 (1973);A. P. Lightman andD. L. Lee:Phys. Rev. D,8, 364 (1973);C. W. Misner, K. S. Thorne andJ. A. Wheeler:Gravitation (S. Francisco, Cal., 1973).MathSciNetADSCrossRefzbMATHGoogle Scholar

Copyright information

© Società Italiana di Fisica 1977

Authors and Affiliations

  • L. Briatore
    • 1
    • 2
  • S. Leschiutta
    • 3
  1. 1.Istituto di Fisica Generale dell'UniversitàTorino
  2. 2.Laboratorio di Cosmogeofisica del CNRTorino
  3. 3.Istituto Elettrotecnico Nazionale «Galileo Ferraris»Torino

Personalised recommendations