La Rivista del Nuovo Cimento (1978-1999)

, Volume 11, Issue 12, pp 1–86 | Cite as

Application of the Green’s functions method to the study of the optical properties of semiconductors

  • G. Strinati


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. Hanke: inFestkörperprobleme XIX, Advanced Solid State Physics (Vieweg, 1979), p. 43.Google Scholar
  2. [2]
    W. Hanke, H. J. Mattausch, andG. Strinati: inElectron Correlations in Solids, Molecules, and Atoms, edited byJ. T. Devreese andF. Brosens (Plenum Press, New York, N. Y., 1983), p. 289.CrossRefGoogle Scholar
  3. [3]
    W. Hanke, N. Meskini, andH. Weiler: inElectronic Structure, Dynamics and Quantum Structural Properties of Condensed Matter, edited byJ. T. Devreese andP. Van Camp (Plenum Press, New York, N. Y., 1985), p. 113.CrossRefGoogle Scholar
  4. [4]
    A. A. Abrikosov, L. P. Gorkov, andI. E. Dzyaloshinski:Methods of Quantum Field Theory in Statistical Physics (Prentice-Hall, Englewood Cliff, N.J., 1963);A. L. Fetter andJ. D. Walecka:Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, N. Y., 1971);G. Rickayzen:Green’s Functions and Condensed Matter (Academic Press, London, 1980);G. D. Mahan:Many-Particle Physics (Plenum Press, New York, N. Y., 1981).Google Scholar
  5. [5]
    We follow closely the treatment due toL. Hedin andS. Lundqvist: inSolid State Physics, edited byH. Ehrenreich, F. Seitz, andD. Turnbull (Academic Press, New York, N. Y., 1969), Vol.23, p. 1, although our presentation differs from theirs in several technical details.Google Scholar
  6. [6]
    L. P. Kadanoff andG. Baym:Quantum Statistical Mechanics (Benjamin, Menlo Park, 1962).Google Scholar
  7. [7]
    A term which ensures the charge neutrality of the system is assumed to be included inV(r).Google Scholar
  8. [8]
    See,e.g.,C. Csanak,H. S. Taylor, andR. Yaris:Adv. At. Mol. Phys.,7, 287 (1971).ADSCrossRefGoogle Scholar
  9. [9]
    P. Nozières:Theory of Interacting Fermi Systems (Benjamin, New York, N. Y., 1964).Google Scholar
  10. [10]
    L. J. Sham andT. M. Rice:Phys. Rev.,144, 708 (1966).ADSCrossRefGoogle Scholar
  11. [11]
    G. Baym andL. P. Kadanoff:Phys. Rev.,124, 287 (1961).MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    M. Gell-Mann andF. Low:Phys. Rev.,84, 350 (1951).MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    Cf.,e.g., the second of references [4],. sects.13, 32, and52.Google Scholar
  14. [14]
    G. Baym:Phys. Rev.,127, 1391 (1962).MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    Equation (6.4) can also be interpreted physically as the continuity equation in the presence of the external fieldU whenever the time dependence ofU is slow enough for the adiabatic approximation to hold,i.e. if the external field drives the system back to the ground state after it has exhausted its action.Google Scholar
  16. [16]
    J. R. Schrieffer:Theory of Superconductivity (Benjamin, New York, N. Y., 1964), Chap. 8.Google Scholar
  17. [17]
    L. J. Sham andW. Kohn:Phys. Rev.,145, 561 (1966).ADSCrossRefGoogle Scholar
  18. [18]
    L. J. Sham:Phys. Rev.,150, 720 (1966).ADSCrossRefGoogle Scholar
  19. [19]
    G. Strinati, H. J. Mattausch, andW. Hanke:Phys. Rev. B,25, 2867 (1982).ADSCrossRefGoogle Scholar
  20. [20]
    W. Heitler:The Quantum Theory of Radiation (Clarendon, Oxford, 1954), subsect.1.6; see also the last of references [4]A. A. Abrikosov, L. P. Gorkov, andI. E. Dzyaloshinski:Methods of Quantum Field Theory in Statistical Physics (Prentice-Hall, Englewood Cliff, N.J., 1963), subsect.1.5.Google Scholar
  21. [21]
    R. Del Sole andE. Fiorino:Phys. Rev. B,29, 4631 (1984).ADSCrossRefGoogle Scholar
  22. [22]
    Cf.,e.g.,J. D. Jackson:Classical Electrodynamics, (J. Wiley, New York, N.Y., 1962), subject.6.5.Google Scholar
  23. [23]
    L. Rosenfeld:Theory of Electrons (North-Holland, Amsterdam, 1951), Chap. 2.Google Scholar
  24. [24]
    H. Ehrenreich: inThe Optical Properties of Solids, Varenna Course XXXIV, edited byJ. Tauc (Academic Press, New York, N.Y., 1966), p. 106.Google Scholar
  25. [25]
    V. Ambegaokar andW. Kohn:Phys. Rev.,117, 423 (1960).MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    Equations (8.23) generalize to a crystalline material eqs. (6–168) of ref. [9]. which hold for a homogeneous system. The latter, however, hold for any value of the wave vector.Google Scholar
  27. [27]
    Equation (8.24) generalizes to all orders of perturbation theory the result obtained in ref. [23], within the time-dependent-screened-Hartree-Fock approximation which will be discussed in subsect.8.4.Google Scholar
  28. [28]
    M. Born andK. Huang:Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, 1968), Appendix VI.Google Scholar
  29. [29]
    F. Bassani andM. Altarelli: inHandbook of Synchrotron Radiation, edited byE. E. Koch (North-Holland, Amsterdam, 1983), p. 463.Google Scholar
  30. [30]
    For a truly isotropic medium an equation similar to eq. (8.42) can be proved forany finite wave vector, since the transverse and the longitudinal components of a tensor that satisfies eq. (8.28) for any rotation ℛ are completely decoupled (cf. ref. [9], subsect.6.6.Google Scholar
  31. [31]
    W. Hanke andL. J. Sham:Phys. Rev. B,12, 4501 (1975).ADSCrossRefGoogle Scholar
  32. [32]
    W. Hanke andL. J. Sham:Phys. Rev. B,21, 4656 (1980).ADSCrossRefGoogle Scholar
  33. [33]
    H. J. Mattausch, W. Hanke, andG. Strinati:Phys. Rev. B,27, 3735 (1983).ADSCrossRefGoogle Scholar
  34. [34]
    N. Meskini, H. J. Mattausch, andW. Hanke:Solid State Commun.,48, 807 (1983).ADSCrossRefGoogle Scholar
  35. [35]
    G. Wendin:Phys. Lett. A,51, 291 (1975);M. Ya. Amusia, V. K. Ivanov, andL. V. Chernysheva:Phys. Lett. A,59, 191 (1976);M. Ya. Amusia:Appl. Opt.,19, 4042 (1980);Z. Crljen andG. Wendin:Phys. Scr.,32, 359 (1985).ADSCrossRefGoogle Scholar
  36. [36]
    L. Hedin:Phys. Rev.,139, A 796 (1965).ADSCrossRefGoogle Scholar
  37. [37]
    The approximation\(\overline {RPA} \) is equivalent to the independent-electron approximation of the ordinary band theory. Cf.,e.g.,F. Bassani andG. Pastori Parravicini:Electronic States and Optical Transitions in Solids (Pergamon Press, Oxford, 1975), subsect.5.1.Google Scholar
  38. [38]
    Cf. ref. [39]. subsect.6.3.CrossRefGoogle Scholar
  39. [39]
    M. del Castillo-Mussot andL. J. Sham:Phys. Rev. B,31, 2092 (1985).CrossRefGoogle Scholar
  40. [40]
    L. J. Sham andM. Schlüter:Phys. Rev. Lett.,51, 1888 (1983);L. J. Sham:Phys. Rev. B,32, 3876 (1985);L. J. Sham andM. Schlüter:Phys. Rev. B,32, 3883 (1985);M. Lannoo, M. Schlüter, andL. J. Sham:Phys. Rev. B,32, 3890 (1985).ADSCrossRefGoogle Scholar
  41. [41]
    G. Strinati, H. J. Mattausch, andW. Hanke:Phys. Rev. Lett.,45, 290 (1980). See also ref. [19]G. Strinati, H. J. Mattausch, andW. Hanke:Phys. Rev. B,25, 2867 (1982).ADSCrossRefGoogle Scholar
  42. [42]
    W. Hanke, Th. Gölzen, andH. J. Mattausch:Solid State Commun.,51, 23 (1984).ADSCrossRefGoogle Scholar
  43. [43]
    C. S. Wang andW. E. Pickett:Phys. Rev. Lett.,51, 597 (1983).ADSCrossRefGoogle Scholar
  44. [44]
    M. S. Hybertsen andS. G. Louie:Phys. Rev. Lett.,55, 1418 (1985);M. S. Hybertsen andS. G. Louie:Phys. Rev. B,32, 7005 (1985).ADSCrossRefGoogle Scholar
  45. [45]
    V. M. Galitskii andA. B. Migdal:Sov. Phys. JEPT,7, 96 (1958).MathSciNetGoogle Scholar
  46. [46]
    Physically, the energy dependence of the self-energy is connected to the coupling of multiple electron-hole excitations with the primary one-particle excitation. Cf.G. Strinati:Nuovo Cimento D,4, 397 (1984).ADSCrossRefGoogle Scholar
  47. [47]
    A. J. Layzer:Phys. Rev.,129, 897 (1963).MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    Cf.,e.g., the second of references [4],, sect.10.Google Scholar
  49. [49]
    A. Mauger andM. Lannoo:Phys. Rev. B,15, 2324 (1977).ADSCrossRefGoogle Scholar
  50. [50]
    For numerical convenience, in the rest of this section we shall use the Bohr radius as the unit of length and the rydberg as the unit of energy (ℏ=1,m=1/2,e 2=2 in these units).Google Scholar
  51. [51]
    For a core hole whose wave function is well localized within a lattice cell, neglecting the energy dependence of the screened interaction leads to a polarization shift which is twice the correct value,i.e. it misses the adiabatic factor of 1/2. Physically, the difference is due to the so-called Coulomb hole term (cf. ref. [5]).Google Scholar
  52. [52]
    Cf.,e.g., sect.14 of the second of references [4].Google Scholar
  53. [53]
    For a review on impurity levels see ref. [31], andS. T. Pantelides:Rev. Mod. Phys.,50, 797 (1978).ADSCrossRefGoogle Scholar
  54. [54]
    H. J. Mattausch, W. Hanke, andG. Strinati:Phys. Rev. B,26, 2302 (1982).ADSCrossRefGoogle Scholar
  55. [55]
    Cf.,e.g., ref. [39]. Chap. 6.CrossRefGoogle Scholar
  56. [56]
    G. Strinati:Phys. Rev. Lett.,49, 1519 (1982);G. Strinati:Phys. Rev. B,29, 5718 (1984).ADSCrossRefGoogle Scholar
  57. [57]
    M. Altarelli andF. Bassani:J. Phys. C,4, L328 (1971).ADSCrossRefGoogle Scholar
  58. [58]
    M. H. Cohen andF. Keffer:Phys. Rev.,99, 1128 (1955).ADSCrossRefGoogle Scholar
  59. [59]
    R. S. Knox:Theory of Excitons (Academic Press, New York, N.Y., 1963), sect.3 b.Google Scholar
  60. [60]
    Y. Onodera andY. Toyozawa:J. Phys. Soc. Jpn.,22, 833 (1967).ADSCrossRefGoogle Scholar
  61. [61]
    H. A. Bethe andE. Salpeter:Quantum Mechanics of One- and Two-Electron Atoms (Springer-Verlag, Berlin, 1957), sect.61.CrossRefGoogle Scholar
  62. [62]
    D. J. Thouless:Nucl. Phys.,22, 78 (1961);M. Ya. Amus’ya, N. A. Cherepkov, andL. V. Chernysheva:Sov. Phys. JETP,33, 90 (1971).MathSciNetCrossRefGoogle Scholar
  63. [63]
    Cf.,e.g.,N. W. Ashcroft andN. D. Mermin:Solid State Physics (Saunders College, Philadelphia, Penn., 1976), Chapter 27.Google Scholar
  64. [64]
    U. Fano:Phys. Rev.,118, 451 (1960).MathSciNetADSCrossRefGoogle Scholar
  65. [65]
    This point is discussed in detail byS. K. Sinha, R. P. Gupta, andD. L. Price:Phys. Rev. B,9, 2564 (1974). Within the TDSHF approximation it has been estimated that the screened electron-hole interaction reduces to only about 1/2 of the self-interaction (cf. ref. [34]N. Meskini, H. J. Mattausch, andW. Hanke:Solid State Commun.,48, 807 (1983)).ADSCrossRefGoogle Scholar
  66. [66]
    Y. Onodera:Prog. Theor. Phys.,49, 37 (1973).ADSCrossRefGoogle Scholar
  67. [67]
    Quite generally, the condition\(\int\limits_O {dr' \bar \chi } (r, r'; \omega ) = 0\) holds at any finite ω for the full irreducible polarizability including all possible many-body effects. This condition, that follows from the counterpart of the Ward identity (7.11) for the irreducible vertex functions, can be extrapolated at ω=0 for a system which, like a crystalline insulator or semiconductor, has an energy gap in its spectrum. It can thus be taken as a quantum-mechanical characterization of the insulator itself (cf.W. Bardyszewski,R. Del Sole,J. Krupski andG. Strinati:Surf. Sci.,167, 363 (1986)).Google Scholar

Copyright information

© Società Italiana di Fisica 1988

Authors and Affiliations

  • G. Strinati
    • 1
  1. 1.Dipartimento di Fisica dell’Università «La Sapienza»RomaItalia

Personalised recommendations