Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 110, Issue 10, pp 1227–1235 | Cite as

Mathematical consequences of Gyarmati’s principle in rational thermodynamics

  • U. Lucia
Article

Summary

The calculus of variations can be applied in thermodynamics obtaining both local and global analysis for the thermodynamical systems. Gyarmati’s principle is demonstrated to be the mathematical fundamental of the theorem of maximum for the entropy of the open systems. This last theorem is demonstrated for a general thermodynamical transformation, and also when chemical reactions can occur.

Keywords

PACS 02.30.Wd Calculus of variation and optimal control PACS 03.40 Classical mechanics of continuous media: general mathematical aspects PACS 05.70 Thermodynamics PACS 05.70.Ln Nonequilibrium thermodynamics irreversible processes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Dunbar W. R., Gaggioli R. A. andLior N.,Thermodynamical reference datums for nuclear reactions, inECOS ’92, ASME (American Society of Mechanical Engineers), Zaragoza, Spain, June 15–18, 1992 (ASME, United Engineering Center, New York, N.Y.) 1992, pp. 49–59.Google Scholar
  2. [2]
    Oláh K.,The entropy production: new aspects, inSecond Law Analysis of Energy Systems: towards the 21st Century, Workshop, Rome, July 5–7, 1995 (Circus, Roma), 1995, pp. 165–179.zbMATHGoogle Scholar
  3. [3]
    Özisik M. N.,Heat Conduction (John Wiley & Sons, New York, N.Y.) 1980.zbMATHGoogle Scholar
  4. [4]
    Lavenda B. H.,Thermodynamics of Irreversible Processes (Macmillan Press, London) 1978.Google Scholar
  5. [5]
    Trusdell C.,Rational Thermodynamics (Springer-Verlag, Berlin) 1984.CrossRefGoogle Scholar
  6. [6]
    Gyarmati I.,Non-Equilibrium Thermodynamics (Springer-Verlag, Berlin) 1970.CrossRefGoogle Scholar
  7. [7]
    Goldstein H.,Classical Mechanics (Addison-Wesley, New York, N.Y.) 1970.zbMATHGoogle Scholar
  8. [8]
    Landau L. D. andLifshitz E. M.,Mechanics (Pergamon Press, Oxford) 1986.Google Scholar
  9. [9]
    Eckert E. R. G. andDrake R. M.,Analysis of Heat and Mass Transfer (McGraw-Hill Book Company, New York, N.Y.) 1972.zbMATHGoogle Scholar
  10. [10]
    Bejan A.,Advanced Engineering Thermodynamics (John Wiley & Sons, New York, N.Y.) 1988.Google Scholar
  11. [11]
    Landau L. D. andLifshitz E. M.,Statistical Physics, Part 1 (Pergamon Press, Oxford) 1980.Google Scholar
  12. [12]
    Sertorio L.,Thermodynamics of Complex Systems (World Scientific, London) 1991.Google Scholar
  13. [13]
    Callen H.,Thermodynamics (John Wiley & Sons, New York, N.Y.) 1960.zbMATHGoogle Scholar
  14. [14]
    de Groot S. R. andMazur P.,Non-Equilibrium Thermodynamics (North-Holland Pubblishing Company, Amsterdam) 1962.Google Scholar
  15. [15]
    Glansdorff P. andPrigogine I.,Physica,30 (1964) 351.MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    Glansdorff P. andPrigogine I.,Thermodynamic Theory of Structure, Stability and Fluctuations (John Wiley & Sons, New York, N.Y.) 1971.zbMATHGoogle Scholar
  17. [17]
    Harumi E.,J. Acoust. Soc. Am.,95 (1994) 2409.CrossRefGoogle Scholar
  18. [18]
    van Stralen S. andCole R.,Boiling Phenomena (McGraw-Hill, New York, N.Y.) 1979.zbMATHGoogle Scholar

Copyright information

© Società Italiana di Fisica 1995

Authors and Affiliations

  • U. Lucia
    • 1
  1. 1.Dipartimento di EnergeticaFirenzeItaly

Personalised recommendations