Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 110, Issue 10, pp 1165–1176 | Cite as

The physical interpretation of the Lanczos tensor

  • M. D. Roberts
Article

Summary

The field equations of general relativity can be written as first-order differential equations in the Weyl tensor; the Weyl tensor, in turn, can be written as a first-order differential equation in a three-index tensor called the Lanczos tensor. Similarly, in the electromagnetic theory Maxwell’s equations can be written as first-order differential equations in the field tensorFab and this in turn can be written as a first-order differential equation in the vector potentialAa; thus the Lanczos tensor plays a similar role in general relativity to that of the vector potential in the electromagnetic theory. The Aharonov-Bohm effect shows that when quantum mechanics is applied to electromagnetic theory, the vector potential is dynamically significant, and this leads to an attempt to quantize the gravitational field by pursuing the analogy between the vector field and the Lanczos tensor.

Keywords

PACS 04.60 Quantum theory of gravitation PACS 03.65 Quantum theory quantum mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hawking S. W. andEllis G. F. R.,The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge) 1973.CrossRefGoogle Scholar
  2. [2]
    Lanczos C. Rev. Mod. Phys.,34, (1962) 379.MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    Roberts M. D.,Gen. Rel. Grav.,20 (1988) 775.ADSCrossRefGoogle Scholar
  4. [4]
    Roberts M. D. Mod. Phys. Lett. A,4 (1989) 2739.ADSCrossRefGoogle Scholar
  5. [5]
    Roberts M. D.,Czech. J. Phys.,42 (1992) 151.ADSCrossRefGoogle Scholar
  6. [6]
    Rovelli C.,Class. Quantum Grav.,8 (1991) 151.CrossRefGoogle Scholar
  7. [7]
    Ehernberg W. andSiday R. E.,Proc. Phys. Soc. B,62 (1948) 8.ADSCrossRefGoogle Scholar
  8. [8]
    Aharanov Y. andBohm D.,Phys. Rev. 115 (1959) 485.MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    Bohm D. andHiley B. J.,Nuovo Cimento A,52 (1979) 295.MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    Chambers R. G.,Phys. Rev. Lett.,5 (1960) 3.ADSCrossRefGoogle Scholar
  11. [11]
    Vilenkin A.,Phys. Rev. D,23 (1981) 852.ADSCrossRefGoogle Scholar
  12. [12]
    Gott IIIJ. P.,Astrophys. J.,2888 (1985) 422.MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    Bezerra V. B. Phys. Rev. D,35 (1987) 2031.MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    Patra A. C. andRay D.,J. Math. Phys.,27 (1986) 568.MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1995

Authors and Affiliations

  1. 1.LondonUK

Personalised recommendations