Advertisement

The Indian Journal of Pediatrics

, Volume 71, Issue 4, pp 325–329 | Cite as

Iodine deficiency and development of brain

  • Vani Sethi
  • Umesh KapilEmail author
Review Article

Abstract

Iodine is a trace element essential for the synthesis of triodothyronine (T3) and thyroxine (T4). Inadequate intake of iodine leads to insufficient production of these hormones, which play a vital role in the process of early growth and development of most organs, especially the brain. The neurological sequele of iodine deficiency are mediated by thyroid hormone deficiency, varying from minimal brain function to a syndrome of severe intellectual disability. All the basic processes of neurogenesis: cellular proliferation, differentiation, migration, and selective cell death are impaired during period of brain growth spurt. Evidence suggests alterations in synaptology, neurons, myelin sheaths, glial cells, and morphology of cerebrum and cerebellum in severe iodine deficiency. Foetal thyroid ontogenesis occurs after the first trimester. Until then foetus is dependent on maternal T4. A thyroid dependent event important for subsequent brain development occurs in the beginning of the third trimester of pregnancy

Key words

Iodine deficiency Brain development Iodine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Markou K, Georgopolous N, Kyriazopoulou V, Vagenakis GA. Iodine induced hypothyroidism.Thyroid 2001; 11: 501–507.PubMedCrossRefGoogle Scholar
  2. 2.
    Bernai J, Nunez J. Thyroid hormone action, and brain development.Trends Endocrinol Metab 2000; 133:390–398.Google Scholar
  3. 3.
    Delange F. Iodine deficiency as a cause of brain damage.Postgrad Med J 2001; 77: 217–220.PubMedCrossRefGoogle Scholar
  4. 4.
    WHO. Iodine. InTrace Elements in Human Nutrition and Health. Geneva, Macmillan, 1996; 49–71.Google Scholar
  5. 5.
    Kapil U, Sohal KS, Sharma TD, Tandon M, Pathak P. Assessment of Iodine deficiency Disorders using the 30 cluster approach in District Kangra Himachal Pradesh, India.J Trop Pediatr 2000; 46(5): 264–266.PubMedCrossRefGoogle Scholar
  6. 6.
    ICCIDD Newsletter May, 2001: Iodine Deficiency Disorder (IDD) : 1–13.Google Scholar
  7. 7.
    IDD Newsletter. Global IDD status 1999; 15:17-19.Google Scholar
  8. 8.
    Kapil U. Iodine deficiency in India.National Medical Journal of India 1989; 3:98–99.Google Scholar
  9. 9.
    Ramji S. Iodine Deficiency Disorders — epidemiology, clinical profile and diagnosis. In Sachdev, HPS, Choudhury P, eds.Nutrition in Children: Developing Country Concerns. 1 edn. India, Conveners: national update on nutrition in children, 1994; 245–249.Google Scholar
  10. 10.
    Pharoah POD, Buttfield IH, Hetzel BS. Neurological damage to the foetus resulting from severe iodine deficiency during pregnancy.Lancet 1971; 1:308–310.PubMedCrossRefGoogle Scholar
  11. 11.
    McCarrison R. Observations on endemic cretinism in the Chithral and Gilgit valleys.Lancet 1908; 2:1275–1280.CrossRefGoogle Scholar
  12. 12.
    Hetzel BS. SOS for a billionthe nature and magnitude of iodine deficiency disorders. In Hetzel BS, Pandav CV, eds.SOS for a Billion-The Conquest of Iodine Deficiency Disorders. 2 edn. Oxford University Press, 1997; 1–29.Google Scholar
  13. 13.
    Wartofsky L. Diseases of the thyroid. In Fauci AS, Braunwald E, Isselbacher KJ, Wilson JD, Marten JB, Kasper DLet al. eds.Harrisons Principles of Internal Medicine. 14 edn. Tata Mc Graw Hill, 1998; 2012.Google Scholar
  14. 14.
    Contempre’ BE, Jautiaux R, Calvo D, Jurkovie S, Campbell, Morreale de Escobar G. Detection of thyroid hormone in human embryonic cavities during the first trimester of pregnancy.J Clin Endocrinol Metab 1993; 77:1719–1722.CrossRefGoogle Scholar
  15. 15.
    Morreale de Escobar G. The role of thyroid hormone in foetal neuro development.J Pediatr Endo Metab 2001; 14:1453–1462.Google Scholar
  16. 16.
    Evans IM, Sinha AK, Dickard MR, Edwards PR, Leonard AJ, Ekins RP. Maternal hypothyroxinemia disrupts neurotransmitter metabolic enzymes in developing brain.J Endocrinol 1999; 161:273–279.PubMedCrossRefGoogle Scholar
  17. 17.
    Delange FM, Fisher DA. Thyroid hormone and iodine requirements in man during brain development. In StannburyJB, Delange F, Dunn JT and Pandav CS, eds.Iodine in Pregnancy; Delhi; Oxford University Press, 1998; 1–27.Google Scholar
  18. 18.
    Calvo RM, Obregon MJ, Ruiz de Onã C. Congenital hypothyroidism studied in ratscrucial role of maternal thyroxine but not of triiodthyronine in the protection of the foetal brain.J Clin Endocrinol Metab 1990; 86: 889–899.Google Scholar
  19. 19.
    Santini F, Chiovato L, Ghirri P, Lapi P. Serum iodothyroninees in the human foetus and the newborn: Evidence for a important role of placenta in foetal thyroid hormones homeostasis.J Clin Endocrinol Metab 1999; 84: 493–498.PubMedCrossRefGoogle Scholar
  20. 20.
    Ruiz de Onã C, Obregon MJ, Escobar del Rey F, Morreale de Escobar G. Development of changes in rat brain 5′-deiodinase and thyroid hormones during fetal period: The effects of fetal hypothyroidism and maternal thyroid hormones.Pediatr Res 1988; 24:588–594.PubMedCrossRefGoogle Scholar
  21. 21.
    Iskaros J, Pickard M, Evana I. Thyroid hormone receptor gene expression in first trimester human foetal brain.J Clin Endocrinol Metab 2000; 85: 2620–2623.PubMedCrossRefGoogle Scholar
  22. 22.
    Vulsuma T, Gons MH, Vijlder de JJM. Maternal-foetal transfer of thyroxine in congenital hypothyroidism due to a total organification defect or thyroid agencies.N Engl J Med 1989; 321:13–16.CrossRefGoogle Scholar
  23. 23.
    Dunn JT. Endemic goitre and cretinism. An updated on iodine status.Trends Endocrinol Metab 2001; 14:1469–1473.Google Scholar
  24. 24.
    Glinoer D, Delange F. The potential repercussions of maternal, foetal and neonatal hypothroxinemia on the progeny.Thyroid 2000; 10:871–887.PubMedCrossRefGoogle Scholar
  25. 25.
    Sinha AK, Pickard MR, Ekins RP. Maternal hypothyroxinemia and brain development: A hypothetical control system governing foetal exposure to maternal thyroid hormones.Acta Med-Austriaca 1992; 19S: 40–48.Google Scholar
  26. 26.
    Valverde F, Ruiz-Marcos A. Dendentic spines in the visual cortex of the mouse. Introduction to a mathematical model. Exp.Brain Res 1969; 8:269–283.Google Scholar
  27. 27.
    Lazarus JH. Thyroid Hormones and Intellectual development: A clinician’s view.Thyroid 1999; 9: 659–665.PubMedGoogle Scholar
  28. 28.
    Mussa GC, Zaffaroni M, Mussa F. Thyroid hormones and the development of the nervous system.Minerva-Pediatr 1990; 42: 321–329.PubMedGoogle Scholar
  29. 29.
    Delong GR, Xue-Yi C, Xin-Min J, Zhi-Hond D, Rakeman MA, Ming-li Zet al. Iodine supplementation of a cross-section of iodine deficient pregnant women: Does the human foetal brain undergo metamorphosis. In Stanbury JB, Delange F, Dunn JT and Pandav CS, eds.Iodine in Pregnancy, Delhi, Oxford University Press, 1998; pp 55–78.Google Scholar
  30. 30.
    Thilly CH, Delange F, Lagasse R, Bourdoux P, Ramioul L, Berquist Het al. Foetal hypothyroidism and maternal thyroid status in severe endemic goiter.J Clin Endocrinol Metab 1978; 47:354–360.PubMedGoogle Scholar
  31. 31.
    Kochupillai N, Godbole MM, Pandav CS, Karmarkar MG, Ahuja MMS. Neonatal thyroid status in iodine deficient environments of the SubHimalayan region.Indian J Med Res 1984; 80:293–299.PubMedGoogle Scholar
  32. 32.
    Hetzel BS. Studies of the effect of iodized oil on foetal development in severely iodine deficient sheep. In StanburyJB, Delange F, Dunn JT, Pandav CS, eds.Iodine in Pregnancy, Delhi, Oxford University Press, 1998; pp 92–101.Google Scholar
  33. 33.
    Ruiz-Marcos A, Sanchez-Toscano FS, Salas J, Escobar del ReyF, Morreale de Esacobar G. Differential effects of hypothyroidism on the development of different areas and layers of the cerebral certex. In Kochupillai N, Karmarkar MG, Ramalingaswami V, eds.Iodine in Nutrition Thyroxine and Brain Development. New Delhi. Tata McGrawHill, 1986; pp 126–131.Google Scholar
  34. 34.
    Delong R. Neurological involvement in iodine deficiency disorders. In Hetzel BS, Dunn JT, Stanbury JB, eds.The Prevention and Control of Iodine Deficiency Disorders. Elseiver Science Publishers, 1987; 49–64.Google Scholar
  35. 35.
    Delange F. Endemic cretinism. In Braveman LE and Utiger RD, eds.A Fundamental and Clinical Text. Thyroid Philadelphia: Lippincott; 1996: 756–781.Google Scholar
  36. 36.
    Koibuchi N, Chin WW. Thyroid hormone action and brain development.Trends Endocrinol Metab 2000; 4:123–128.Google Scholar
  37. 37.
    Martinez-Galan JR, Pedraza P, Santacana M, Escobar del Ray F, Morreale de Escobar, Ruiz — Marcos A.J Clin Invest 1997; 99: 2701–2709.PubMedGoogle Scholar
  38. 38.
    Rakie P. Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition.Science 1974; 183:425.CrossRefGoogle Scholar
  39. 39.
    Obregon MJ, Santisterban P, Rodriguez-Pena A, Pascual A, Carxegena P, Ruiz-Marcos Aet al. Cerebral hypothyroidism in rats with adult-onset iodine deficiency.Endocrinology 1984; 115-2: 614–624.CrossRefGoogle Scholar
  40. 40.
    Juan RMG, Pablo P, Maria S, Escobar del R, Morreale de Escobar, Antonio R. Early effects of iodine deficiency on radial glial cells of the hippocampus of the rat foetus.J Clin Invest 1997; 99: 2701–2709.Google Scholar
  41. 41.
    Ramie A, Rabie A. Effect of thyroid deficiency on the development of glia in the hippocampal formation of the rat: an immunocytochemical study.Glia 1988; 1: 337–345.CrossRefGoogle Scholar
  42. 42.
    Hetzel BS, Mano M. A review of experimental studies of iodine deficiency during foetal development.J Nutr 1989; 119: 145–181.PubMedGoogle Scholar
  43. 43.
    Potter BJ, Mano MJ, Belling GB, Mclntosh GH, Hua C, CraggBGet al. Retarded foetal brain development resulting from severe dietary iodine deficiency in sheep.Neuropathol-Appl-Neurobiol 1982; 8: 303–313.PubMedGoogle Scholar
  44. 44.
    Mclntosh GH, Potter BJ, Mano MT, Hua CH, Cragg BG, HetzelBS. The effect of maternal and foetal thyroidectomy on foetal brain development in sheep.Neuropathol-Appl-Neurobiol 1983; 9:215–223.Google Scholar
  45. 45.
    Mano MT, Potter BJ, Belling GB, Chavadevi J, Hetzel BS. Foetal brain development in response to iodine deficiency in a primate model(Callithrix jacchus).J Neurol Sci 1987; 79:287–300.PubMedCrossRefGoogle Scholar
  46. 46.
    Earyrs JT. Endocrine influence on cerebral development.Arch Biol 1964; 75: 529.Google Scholar
  47. 47.
    Bala’zs R, Brookbank BWL, Davidson S, Eayrs JT, Wilson DA. The effect of neonatal thyroidectomy on myelination in the rat brain.Brain Res 1969; 15: 219.CrossRefGoogle Scholar
  48. 48.
    Lie JQ, Wang X, Yan YQ, Wang KW, Qiw DK, Xin ZFet al. The effect on foetal brain development in the rat of a severely iodine deficient diet derived from an endemic areaobservation on the first generation.Neuropathol-Appl-Neurobiol 1986; 12:261–276.CrossRefGoogle Scholar
  49. 49.
    Bleichrodt N, Born MPH. A meta-analysis of research on iodine and its relationship to cognitive development. In Stanbury JS, ed.The Damaged Brain of Iodine Deficiency-Cognitive, Behavioural, Servomotor and Educative Aspects. New York. Cognizant Communication Corporation, 1994; 195–200.Google Scholar
  50. 50.
    Mehta M, Pandav CS, Kochupillai N. Intellectual assessment of school children from severely iodine deficient villages.Indian Pediatr 1987; 24:467–473.PubMedGoogle Scholar
  51. 51.
    Haddow JE, Palomaki GE, Allan WC, Williams JR, Knight GJ, Ganhnon Jet al. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child.N Engl J Med 1999; 341: 549–555.PubMedCrossRefGoogle Scholar

Copyright information

© Dr. K C Chaudhuri Foundation 2004

Authors and Affiliations

  1. 1.Department of Human NutritionAll India Institute of Medical SciencesNew DelhiIndia

Personalised recommendations