Il Nuovo Cimento A (1965-1970)

, Volume 2, Issue 1, pp 122–138 | Cite as

On a semi-group approach to quantum field equations

  • E. Salusti
  • A. Tesei


Some field equations, suggested by the Thirring and Federbush models in quantum field theory are studied in a two-dimensional space-time. The theory of nonlinear semi-groups is used. The unknowns are functions whose values are bounded operators on a Hilbert space. The existence and uniqueness of the global solution is proved.

О полугрупповом подходе к уравнениям квантовой теории поля


В двумерном пространстве-времени исследуются некоторые уравнения поля, предложенные в моделях Тирринга и Федербуща в квантовой теории поля. Испольэуется теория нелинейной полугруппы. Неиэвестными являются функции, чьи эначения представляют ограниченные операторы в гильбертовом пространстве. Докаэывается сушествование и единственность обшего рещения.


Si studiano in uno spaziotempo bidimensionale, usando la teoria dei semigruppi non lineari, varie equazioni di campo suggerite dai modelli di Thirring e di Federbush. Le incognite sono funzioni a valori operatori limitati su uno spazio di Hilbert. Si dimostra l’esistenza ed unicità della soluzione globale.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Complete references until 1968 can be found inJ. Glimm andA. Jaffe:Lecture Notes at the Varenna Summer School 1968 (New York, 1969). See also:The Yukawa 2 quantum field theory without cut-offs, to appear;Self-adjointness of the Yukawa 2 Hamiltonian, to appear;Rigorous quantum field theory models, to appear inBull. Am. Math. Soc.; Comm. Pure Appl. Math.,22, 401 (1969);L. Rosen:Comm. Math. Phys.,16, 157 (1970).Google Scholar
  2. (2).
    R. Hoegh-Krohn:Comm. Math. Phys.,14, 171 (1969);A general class of quantum fields without cut-offs in two space-time dimensions, to appear;Boson fields with bounded interaction densities, to appear;On the spectrum of the space cut-off: P(φ): Hamiltonian in two space-time dimensions, to appear;R. Hoegh-Krohn andB. Simon:Hypercontractive semi-groups and self-interacting boson fields, to appear.MathSciNetCrossRefADSGoogle Scholar
  3. (3).
    J. Glimm andA. Jaffe:Phys. Rev.,176, 1945 (1968);Ann. of Math.,91, 362 (1970);The λ(φ 4)2 quantum field theory without cut-offs. - III:The physical vacuum, to appear;J. Cannon andA. Jaffe:Comm. Math. Phys.,17, 261 (1970).MathSciNetCrossRefADSMATHGoogle Scholar
  4. (4).
    I. Segal:Journ. Math. Phys.,1, 468 (1960).CrossRefADSGoogle Scholar
  5. (5).
    I. Segal:Proc. Nat. Acad. Sci.,57, 1178 (1967).MathSciNetCrossRefADSGoogle Scholar
  6. (6).
    A. Wightman:1964 Cargèse Summer School Lectures, edited byM. Levy (New York, 1967).Google Scholar
  7. (7).
    N. Dunford andJ. Schwartz:Linear Operators, Vol. 1.Google Scholar
  8. (8).
    T. Kato:Journ. Math. Soc. Japan,19, 508 (1967).CrossRefMATHGoogle Scholar
  9. (9).
    G. Da Prato:Somme d’application non linéaires dans des cônes et équations d’évolution dans des espaces d’opérateurs, to appear.Google Scholar
  10. (10).
    M. Jannelli:A note on some nonlinear noncontraction semi-groups, to appear.Google Scholar
  11. (11).
    F. Browder:Ann. of Math.,80, 485 (1964).MathSciNetCrossRefGoogle Scholar
  12. (12).
    I. Segal:Ann. of Math.,78, 339 (1963).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Società Italiana di Fisica 1971

Authors and Affiliations

  • E. Salusti
    • 1
    • 2
  • A. Tesei
    • 3
  1. 1.Sezione di RomaIstituto Nazionale di Fisica NucleareItaly
  2. 2.Istituto di Fisica dell’UniversitàRoma
  3. 3.Istituto di Matematica dell’UniversitàRoma

Personalised recommendations