Establishment and characterization of a bovine mammary epithelial cell line with unique properties

  • Boris Zavizion
  • Marilyn van Duffelen
  • Warren Schaeffer
  • Ioannis Politis
Cellular Models


Clonal cell lines (BME-UV) were established from primary epithelial cells by stable transfection with a plasmid, carrying the sequence of the simian virus 40 early region mutant tsA58, encoding the thermolabile large T antigen. The BME-UV cells have undergone more than 300 population doublings and produce intranuclear large T antigen. At low confluency, growing islands of cells are apparent exhibiting the characteristic cobblestone morphology of epithelial cells. The BME-UV cells expressed functional markers such as microvilli and desmosomes and biochemical markers of mammary epithelial cells such as a repertoire of cytokeratins. The BME-UV cells are capable of synthesizing low levels of α-lactalbumin and α8l (50 ng/ml of medium/24 h). One of the cell lines, BME-UV1 showed enhanced proliferation in the presence of epidermal growth factor (EGF) and insulinlike growth factor I (IGF-I). The BME-UV1 cell line is the only known bovine mammary epithelial cell line responsive to EGF. The BME-UV cells grown on collagen at low confluency are capable of developing very long projections that most likely allow for communication between cells at a distance from each other. The BME-UV cells may become a valid model system to examine bovine mammary epithelial proliferation and differentiation and cell-to-cell communication.

Key words

immortalization T-antigen 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akers, R. M. Lactation physiology: a ruminant animal perspective. Protoplasma 159:96–111; 1990.CrossRefGoogle Scholar
  2. 2.
    Bausher, J.; Schaeffer, W. I. A diploid rat liver cell culture. 1. Characterization and sensitivity to aflatoxin B1. In Vitro 9:286–293; 1974.CrossRefGoogle Scholar
  3. 3.
    Byatt, J. C.; Larson, B. R.; Baganoff, M. P., et al. Purification and partial characterization of a bovine epidermal growth factor-like polypeptide. Biochem. Int. 20:1179–1187; 1990.PubMedGoogle Scholar
  4. 4.
    Chomczynski, P.; Sacchi, N. Single step method of RNA isolation by acid guanididium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:56–61; 1987.CrossRefGoogle Scholar
  5. 5.
    Cohen, S. H. Dry ice fixation of myofibrils for scanning electron microscopy. Stain Technol. 51:43–45; 1976.PubMedGoogle Scholar
  6. 6.
    Danielson, K. G.; Oborn, C. J.; Durban, E. M., et al. Epithelial mouse mammary cell line exhibiting normal morphogenesis in vivo and functional differentiation in vitro. Proc. Natl. Acad. Sci. USA 81:3756–3760; 1984.PubMedCrossRefGoogle Scholar
  7. 7.
    Graessmann, M.; Graessman, A. Microinjection of tissue culture cells. Methods Enzymol. 101:482–492; 1983.PubMedCrossRefGoogle Scholar
  8. 8.
    Hurley, W. L. Mammary gland function during involution. J. Dairy Sci. 72:1637–1646; 1989.PubMedCrossRefGoogle Scholar
  9. 9.
    Huynh, H.; Pollak, M. HH2A, an immortalized bovine mammary epithelial cell line, expresses the gene encoding mammary derived growth inhibitor (MDGI). In Vitro Cell. Dev. Biol. 31A:25–29; 1995.CrossRefGoogle Scholar
  10. 10.
    Huynh, H. T.; Robitaille, G.; Turner, J. D.: Establishment of bovine mammary epithelial cells (MAC-T): an in vitro model for bovine lactation. Exp. Cell Res. 197:191–199; 1991.PubMedCrossRefGoogle Scholar
  11. 11.
    Jat, P. S.; Sharp, P. A. Cell lines established by a temperature-sensitive simian virus 40 large T-antigen gene are growth restricted at the nonpermissive temperature. Mol. Cell. Biol. 9:1672–1681; 1989.PubMedGoogle Scholar
  12. 12.
    Larson, B. I. Biosynthesis and cellular secretion of milk. In: Larson, B. L., ed. Lactation. Ames, IA: Iowa State University Press; 1985:129–163.Google Scholar
  13. 13.
    Levine, A.; Momand, J.; Findlay, C. The p53 tumour suppressor gene. Nature (Lond.) 351:453–456; 1991.CrossRefGoogle Scholar
  14. 14.
    Medina, D.; Li, M. L.; Oborn, C. J., et al. Casein gene expression in mouse mammary epithelial cell lines: dependence upon the extracellular matrix and cell type. Exp. Cell Res. 172:192–203; 1987.PubMedCrossRefGoogle Scholar
  15. 15.
    Michalopoulos, G.; Pitot, H. C. Primary culture of parenchymal liver cells on collagen membranes. Exp. Cell Res. 94:70–78; 1975.PubMedCrossRefGoogle Scholar
  16. 16.
    Ossowski, L.; Biegel, D.; Reich, E. Mammary plasminogen activator: correlation with involution, hormonal modulation and comparison between normal and neoplastic tissue. Cell 72:1929–1940; 1979.Google Scholar
  17. 17.
    Paul, E. C. A.; Hochman, J.; Quaroni, A. Conditionally immortalized intestinal epithelial cells: novel approach for study of differentiated enterocytes. Am. J. Physiol. 265:C266-C278; 1993.PubMedGoogle Scholar
  18. 18.
    Politis, I.; Zavizion, B.; White, J. H., et al. Hormonal and extracellular matrix regulation of plasminogen activator in a bovine mammary epithelial cell line. Endocrine 3:345–350; 1985.CrossRefGoogle Scholar
  19. 19.
    Schmid, E.; Franke, W. W.; Grund, C., et al. An epithelial cell line with elongated myoid morphology derived from bovine mammary gland. Exp. Cell Res. 146:309–328; 1983.PubMedCrossRefGoogle Scholar
  20. 20.
    Schmid, E.; Schiller, D. L.; Grund, C., et al. Tissue-specific expression of intermediate filament proteins in a cultured epithelial cell line from the bovine mammary gland. J. Cell Biol. 96:37–50; 1983.PubMedCrossRefGoogle Scholar
  21. 21.
    Spitzer, E.; Grosse, R. EGF receptors on plasma membranes purified from the bovine mammary gland of lactating and pregnant animals. Biochem. Int. 14:581–588; 1987.PubMedGoogle Scholar
  22. 22.
    Talhouk, R. S.; Neiswander, R. L.; Schanbacher, F. L. In vitro culture of cryopreserved bovine mammary cells on collagen gels: synthesis and secretion of casein and lactoferrin. Tissue & Cell 22:583–599; 1990.CrossRefGoogle Scholar
  23. 23.
    Wiens, D. J.; Brooks, C. L.; Hodgson, C. P. Casein, actin, and tubulin expression during early involution in bovine and murine mammary tissue. J. Dairy Sci. 75:1857–1869; 1992.PubMedGoogle Scholar
  24. 24.
    Woodward, T. L.; Akers, R. M.; Turner, J. D. Lack of mitogenic response to EGF, pituitary and ovarian hormones in bovine mammary epithelial cells. Endocrine 2:529–535; 1994.Google Scholar
  25. 25.
    Zavizion, B.; Gorewit, R. C.; Politis, I. Subcloning the MAC-T bovine mammary epithelial cell line: morphology, growth properties, and cytogenetic analysis of clonal cells. J. Dairy Sci. 78:515–527; 1995.PubMedGoogle Scholar
  26. 26.
    Zavizion, B.; Politis, I.; Gorewit, R. C. Bovine mammary myoepithelial cells. I. Isolation, culture, and characterization. J. Dairy Sci. 75:3367–3880; 1992.PubMedGoogle Scholar
  27. 27.
    Zavizion, B.; Politis, I.; Gorewit, R. C. Bovine mammary myoepithelial cells. 2. Interactions with epithelial cells in vitro. J. Dairy Sci. 75:3381–3392; 1992.PubMedCrossRefGoogle Scholar
  28. 28.
    Zavizion, B.; van Duffelen, M.; Schaeffer, W., et al. Establishment and characterization of a bovine mammary myoepithelial cell line. In Vitro Cell. Dev. Biol. (accepted for publication, companion paper).Google Scholar

Copyright information

© Society for In Vitro Biology 1996

Authors and Affiliations

  • Boris Zavizion
    • 1
  • Marilyn van Duffelen
    • 1
  • Warren Schaeffer
    • 2
  • Ioannis Politis
    • 1
  1. 1.Department of Animal and Food SciencesUniversity of VermontBurlington
  2. 2.Department of Microbiology and Molecular GeneticsUniversity of VermontBurlington

Personalised recommendations