Advertisement

Il Nuovo Cimento B (1971-1996)

, Volume 84, Issue 2, pp 167–180 | Cite as

Towards a self-consistent computation of vacuum energy in 11-dimensional supergravity

  • S. Randjbar-Daemi
  • Abdus Salam
  • J. Strathdee
Article

Summary

An attempt is made to balance the negative vacuum energy associated with the Freund-Rubin compactification of the 11-dimensional supergravity theory against the contribution from vacuum fluctuations. We do this in order to obtain a ground-state geometry which has four physical (flat) dimensions and is of the form (Minkowski)4×B7, whereB7 is one of the 7-dimensional manifoldsS7,S5×S2,S4×S3, ⊂P2×S3,S3×S2×S2 or theSU3×SU2×U1 invariant spaces of Witten. We find that all of these solutions are unstable. As a side-issue the facility for computation of the particle spectra, which results from the use of light-cone gauge, is emphasized.

PACS. 04.20

General relativity 

PACS. 04.50

Unified field theories and other theories of gravitation 

Riassunto

Si fa un tentativo di bilanciare l’energia negativa nel vuoto associata con la compattificazione di Freund-Rubin della teoria 11-dimensionale della supergravità rispetto al contributo delle fluttuazioni nel vuoto. Ciò allo scopo di ottenere una geometria dello stato fondamentale che ha quattro dimensioni fisiche (piatte) ed ha la forma (Minkowski)4×B7, doveB7 è uno dei multistrati a sette dimensioniS7,S5×S2,S4×S3, ⊂P2×S3,S3×S2×S2 o degli spazi invarianti di WittenSU3×SU2×U1. Si trova che tutte queste soluzioni sono instabili. Come argomento collaterale si enfatizzano le modalità di calcolo degli spettri delle particelle, che risultano dall’uso del gauge del cono di luce.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    P. G. O. Freund andM. A. Rubin:Phys. Lett. B,94, 233 (1980).ADSMathSciNetCrossRefGoogle Scholar
  2. (2).
    E. Cremer, B. Julia andJ. Scherk:Phys.Lett. B,76, 409 (1978);E. Cremmer andB. Julia:Nucl. Phys. B,159, 141 (1979).ADSCrossRefGoogle Scholar
  3. (3).
    T. Horvath, L. Palla, E. Cremmer andJ. Scherk:Nucl. Phys. B,123, 57 (1979);S. Randjbar-Daemi andR. Percacci:Phys. Lett. B,117, 41 (1982);S. Randjbar-Daemi, Abdus Salam andJ. Strathdee:Nucl. Phys. B,114, 491 (1983);P. Candelas andS. Weinberg: Texas preprint UTTG-6-83, to appear inNucl. Phys. B. Google Scholar
  4. (4).
    C. A. Orzalesi andM. Pauri:Phys. Lett. B,107, 186 (1981);C. A. Orzalesi andM. J. Duff:Phys. Lett. B,122, 37 (1983);C. A. Orzalesi andG. Venturi: CERN preprint TH-3648-CERN (1983);J. S. Dowker: MC/TH/83-80, Manchester preprint;P. Candelas andD. J. Raine: Texas preprint (September 1983).ADSMathSciNetCrossRefGoogle Scholar
  5. (5).
    M. J. Duff, C. Pope andB. Nielson: Imperial College, London, preprint (1984);K. Ito andO. Yasuda: Tokyo preprint UT/426 (1984).Google Scholar
  6. (6).
    Abdus Salam andJ. Strathdee:Ann. Phys. (N. Y.),141, 316 (1982);J. Strathdee: ICTP, Trieste, Internal Report IC/83/3 (1983) (unpublished).ADSMathSciNetCrossRefGoogle Scholar
  7. (7).
    The tachyonic modes in the cases ofB 7=S 7 andB 7=S 4×S 3 had already been exhibited in the Addendum toS. Randjbar-Daemi, Abdus Salam andJ. Strathdee: ICTP, Trieste, preprint IC/83/226, to appear inNucl. Phys. B.Google Scholar
  8. (8).
    In this case the full spectrum has been worked out in the AdS 4 background.F. Englert andH. Nicolai: CERN preprint TH-3711 (1983);B. Biran, A. Casher, F. Englert, M. Rooman andP. Spindal:Phys. Lett. B,134, 179 (1984);E. Sezgin:Phys. Lett. B,138, 57 (1984)’scR. D’Auria andP. Fré: Torino preprint IFTT430 (1983);A. Casher, F. Englert, H. Nicolai andM. Rooman: CERN preprint TH-3794 (1984).Google Scholar
  9. (9).
    S. Randjbar-Daemi, Abdus Salam andJ. Strathdee: ICTP, Trieste preprint IC/84/13. The spaceB 7 (α, β, γ) are obtained from those of this paper by settingp=q=0 andr=1.Google Scholar

Copyright information

© Società Italiana di Fisica 1984

Authors and Affiliations

  • S. Randjbar-Daemi
    • 1
  • Abdus Salam
    • 2
    • 3
  • J. Strathdee
    • 2
  1. 1.Institute for Theoretical PhysicsBernSwitzerland
  2. 2.International Centre for Theoretical PhysicsTriesteItaly
  3. 3.Imperial CollegeLondonEngland

Personalised recommendations