Discrete & Computational Geometry

, Volume 15, Issue 2, pp 221–236 | Cite as

A construction of inflation rules based onn-fold symmetry

  • K.-P Nischke
  • L. Danzer


In analogy to the well-known tilings of the euclidean plane\(\mathbb{E}^2 \) by Penrose rhombs (or, to be more precise, to the equivalent tilings by Robinson triangles) we give a construction of an inflation rule based on then-fold symmetryD nfor everyn greater than 3 and not divisible by 3. For givenn the inflation factor η can be any quotient\(\mu _{n,k} : = \sin \left( {k\pi /n} \right)/\sin \left( {\pi /n} \right)\) as well as any product\(\prod {_{k = 2}^{n/2} \mu _{n,k}^{ak} ,} \) where\(\alpha _2 ,\alpha _3 ,..., \in \mathbb{N} \cup \left\{ 0 \right\}\). The construction is based on the system ofn tangents of the well-known deltoidD, which form angles with the ζ-axis of typevπ/n. None of these tilings permits two linearly independent translations. We conjecture that they have no period at all. For some of them the Fourier transform contains a ℤ-module of Dirac deltas.


Discrete Comput Geom Algebraic Number Theory Symmetric Convex Body Independent Translation Elementary Triangle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    E. Bombieri and J.E. Taylor: Quasicrystals, tilings and algebraic number theory.Contemp. Math. 64 (1987).Google Scholar
  2. 2.
    S. I. Borewicz, I. R. Šafarevic:Zahlentheorie, Birkhäuser-Verlag, Basel, 1966.MATHGoogle Scholar
  3. 3.
    L. C. Washington,Introduction to Cyclotomic Fields, Springer-Verlag, New York, 1982.MATHGoogle Scholar
  4. 4.
    B. Gruenbaum and G. C. Shephard.Tilings and Patterns, Freeman, New York, 1987.MATHGoogle Scholar
  5. 5.
    E. J. W. Whittaker and R. M. Whittaker: Some generalized Penrose patterns from projections ofn-dimensional lattices,Acta Cryst. Sect A 44 (1988), 105–112.CrossRefMathSciNetGoogle Scholar
  6. 6.
    M. Baake, P. Kramer, M. Schlottmann, and D. Zeidler: The Triangle Pattern—a New Quasiperiodic Tiling with Fivefold Symmetry, Preprint TPT-QC-89-08-1 (August 22, 1989).Google Scholar
  7. 7.
    M. Baake, P. Kramer, M. Schlottmann, and D. Zeidler: Planar patterns with fivefold symmetry as sections of periodic structures in 4-space.Internat. J. Mod. Phys. B,4 (1990), 2217–2268.CrossRefMathSciNetGoogle Scholar
  8. 8.
    R. V. Moody and J. Patera: Quasicrystals and Icosians,J. Phys. A,26 (1993), 2829–2853.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    E. A. Robinson, Jr.: The Dynamical Theory of Tilings and Quasicrystallography, Preprint, July 1993.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1996

Authors and Affiliations

  • K.-P Nischke
    • 1
  • L. Danzer
    • 1
  1. 1.Institut für MathematikUniversität DortmundDortmundGermany

Personalised recommendations