Advertisement

Journal of Biosciences

, Volume 6, Issue 6, pp 811–816 | Cite as

Increased circulatory half-life of liposomes after conjunction with dextran

  • D. Pain
  • P. K. Das
  • P. Ghosh
  • B. K. Bachhawat
Article

Abstract

Dextran was covalently coupled to neutral unilamellar liposomes. Dextran conjugated liposomes were cleared from the circulation at a much slower rate than unconjugated liposomes. The uptake of dextran conjugated liposomes by liver and spleen was also decreased. The amount of dextran on the surface of liposomes was found to be a determining factor for their stability in circulation. Dextran conjugated liposomes therefore may be a more effective way of controlled drug release

Keywords

Unilamellar liposomes dextran conjugate drug delivery 

Abbreviations used

Chol

Chlesterol

EL

egg lecithin

PE

phosphatidylethanolamine

ConA

concanavalin A

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ghosh, P. and Bachhawat, B. K. (1980)Biochim. Biophys. Acta,632,562.PubMedGoogle Scholar
  2. Ghosh, P., Bachhawat, B. K. and Surolia, A. (1981a)Arch. Biochem. Biophys.,206,454.PubMedCrossRefGoogle Scholar
  3. Ghosh, P., Das, P. K. and Bachhawat, B. K. (1981b)Biochem. Soc. Trans.,9,512.PubMedGoogle Scholar
  4. Ghosh, P., Das, P. K. and Bachhawat, B. K. (1982)Arch. Biochem. Biophys.,213,266.PubMedCrossRefGoogle Scholar
  5. Gregoriadis, G. (1980)Nature (London),283, 814.CrossRefGoogle Scholar
  6. Hunter, W. M. (1978) inHandbook of Experimental Immunology, 3rd edn (ed.) D. M. Weir (Oxford: Blackwell Scientific Publications p. 14.1.Google Scholar
  7. Marshall, J. J. and Rabinowitz, M. L. (1976)J. Biol. Chem.,251, 1081.PubMedGoogle Scholar
  8. Molteni, L. (1979) inDrug Carriers in Biology and Medicine (ed. G. Gregoriadis) (New York: Academic Press) p. 107.Google Scholar
  9. Papahadjopoulos, D. ed. (1978)Annal. N.Y. Acad. Sci.,308,1.Google Scholar
  10. Richter, A. W. and Hedin, H. I. (1982)Immunol. Today 5, 132.CrossRefGoogle Scholar
  11. Roerdink, F., Dijkstra, J., Hartman, G., Bolscher, B. and Scherphof, G. (1981)Biochim. Biophys. Acta,677,79.PubMedGoogle Scholar
  12. Surolia, A., Parkash, N., Bishayee, S. and Bachhawat, B. K. (1973)Indian J. Biochem. Biophys.,10,145.PubMedGoogle Scholar
  13. Surolia, A., Bachhawat, B. K. and Podder, S. K. (1975)Nature (London),257, 802.CrossRefGoogle Scholar
  14. Torchillin, V. P., Goldmacher, V. S. and Smirnov, U. N. (1978)Biochem. Biophys. Res. Commun.,45, 1841.Google Scholar
  15. Tyrell, D. A., Heath, T. D., Colley, C. M. and Ryman, B. E. (1976)Biochim. Biophys. Acta,457,259.Google Scholar

Copyright information

© Indian Academy of Sciences 1984

Authors and Affiliations

  • D. Pain
    • 1
  • P. K. Das
    • 1
    • 2
  • P. Ghosh
    • 1
    • 3
  • B. K. Bachhawat
    • 1
  1. 1.Indian Institute of Chemical BiologyCalcuttaIndia
  2. 2.Developmental and Metabolic Neurology BranchNational Institutes of HealthBethesdaUSA
  3. 3.Department of MicrobiologyUniformed Services University Health SciencesBethesdaUSA

Personalised recommendations