Advertisement

Journal of Biosciences

, Volume 7, Issue 3–4, pp 269–287 | Cite as

Role of glutamine synthetase in citric acid fermentation byAspergillus niger

  • N. S. Punekar
  • C. S. Vaidyanathan
  • N. Appaji Rao
Article

Abstract

The activity of glutamine synthetase fromAspergillus niger was significantly lowered under conditions of citric acid fermentation. The intracellular pH of the organism as determined by bromophenol blue dye distribution and fluorescein diacetate uptake methods was relatively constant between 6·0–6·5, when the pH of the external medium was varied between 2·3–7·0.Aspergillus niger glutamine synthetase was rapidly inactivated under acidic pH conditions and Mn2+ ions partially protected the enzyme against this inactivation. Mn2+-dependent glutamine synthetase activity was higher at acidic pH (6·0) compared to Mg2+-supported activity. While the concentration of Mg2+ required to optimally activate glutamine synthetase at pH 6·0 was very high (≥ 50 mM), Mn2+ was effective at 4 mM. Higher concentrations of Mn2+ were inhibitory. The inhibition of both Mn2+ and Mg2+-dependent reactions by citrate, 2-oxoglutarate and ATP were probably due to their ability to chelate divalent ions rather than as regulatory molecules. This suggestion was supported by the observation that a metal ion chelator, EDTA also produced similar effects. Of the end-products of the pathway, only histidine, carbamyl phosphate, AMP and ADP inhibitedAspergillus niger glutamine synthetase. The inhibitions were more pronounced when Mn2+ was the metal ion activator and greater inhibition was observed at lower pH values. These results permit us to postulate that glutamine synthesis may be markedly inhibited when the fungus is grown under conditions suitable for citric acid production and this block may result in delinking carbon and nitrogen metabolism leading to acidogenesis

Keywords

Citric acid fermentation glutamine synthetase regulation by metal ions 

Abbreviations used

γ-GHA

γ-Glutamylhydroxamate

His

L-histidine

Glu

L-glutamic acid

TCA-cycle

tricarboxylic acid cycle

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergmeyer, H. U. and Bernt, E. (1974) inMethods of enzymatic analysis, (ed. H. U. Bergmeyer) (New York: Academic Press) Vol. 3, p. 1205.Google Scholar
  2. Berry, D. R. (1975) inThe Filamentous Fungi, (eds J, E. Smith and D. R. Berry) (London: Arnold) Vol. 1, p. 16Google Scholar
  3. Berry, D. R., Chmiel, A. and Al-Obaidy, Z. (1977)inGenetics and Physiology of the Aspergillus, (eds J. E. Smith and J. A. Pateman) (London, New York and San Fransisco: Academic Press) p. 405.Google Scholar
  4. Bowes, I. and Mattey, M. (1979)FEMS. Microbiol. Lett.,6, 219.CrossRefGoogle Scholar
  5. Bowes, I. and Mattey, M. (1980)FEMS. Microbiol, Lett.,7, 323.CrossRefGoogle Scholar
  6. Habison, H., Kubicek, C. P. and Rohr, M. (1979)FEMS. Microbiol. Lett. 5, 39.CrossRefGoogle Scholar
  7. Habison, H., Kubicek, C. P. and Rohr, M. (1983)Biochem. J.,209, 669.CrossRefGoogle Scholar
  8. Hubbard, J. S. and Stadtman, E. R. (1967)J. Bacteriol.,93, 1045.PubMedPubMedCentralGoogle Scholar
  9. Jaenicke, L. and Jesior, J. C. (1978)FEBS Lett. 90, 115.CrossRefGoogle Scholar
  10. Jensen, R. A. (1969)J. Biol. Chem.,244, 2816.PubMedGoogle Scholar
  11. Kloppel, R. and Hofer, M. (1976)Arch. Microbiol.,107, 335.CrossRefGoogle Scholar
  12. Kotyk, A. and Janacek, K. (1975)Cell Membrane Transport, 2nd ed. (New York: Plenum Press) p. 259.CrossRefGoogle Scholar
  13. Kramer, D. N. and Guilbault, G. G. (1963)Anal. Chem.,35, 588.CrossRefGoogle Scholar
  14. Kubicek, C. P., Hampel, M. and Rohr, M. (1979)Arch. Microbiol. 123, 73.CrossRefGoogle Scholar
  15. Kubicek, C. P. and Rohr, M. (1977)Eur. J. Appl. Microbiol.,4, 167.CrossRefGoogle Scholar
  16. Kubicek, C. P. and Rohr, M. (1978)Eur. J. Appl. Microbiol,5, 263.CrossRefGoogle Scholar
  17. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951)J. Biol Chem.,193, 265.PubMedPubMedCentralGoogle Scholar
  18. Maill, L. H. (1978) inEconomic Microbiology, (ed. A. H. Rose) (New York: Academic Press) p. 47.Google Scholar
  19. Mattey, M. (1977)FEMS, Microbiol. Lett.,2, 71.CrossRefGoogle Scholar
  20. Nicolay, K., Scheffers, W. A., Bruinenberg, P. M. and Kaptein, R. (1982)Arch. Microbiol.,133, 83.CrossRefGoogle Scholar
  21. Pateman, J. A. (1969)Biochem. J.,115, 769.CrossRefGoogle Scholar
  22. Punekar, N. S. (1983)Regulation of Glutamine Synthetase and its Role in Citric Acid Fermentation by Aspergillus niger, Ph.D. Thesis, Indian Institute of Science, Bangalore.Google Scholar
  23. Punekar, N. S., Vaidyanathan, C. S. and Appaji Rao, N. (1984)J. Biosci.,6, 17.CrossRefGoogle Scholar
  24. Perlman, D., Kita, D. A. and Peterson, W. H. (1946)Arch. Biochem.,11, 123.PubMedGoogle Scholar
  25. Rohr, M. and Kubicek, C. P. (1981)Process Biochem.,16, 34.Google Scholar
  26. Rowe, W. B., Ronzio, R. A., Wellner, V. P. and Meister, A. (1970)Methods Enzymol.,A17, 900.CrossRefGoogle Scholar
  27. Schramm, V. L. (1982)Trends Biochem. Sci.,7, 369.CrossRefGoogle Scholar
  28. Shapiro, B. M. and Stadtman, E. R. (1970)Ann. Rev. Microbiol.,24, 501.CrossRefGoogle Scholar
  29. Slavik, J. (1982)FEBS Lett.,140, 22.CrossRefGoogle Scholar
  30. Spencer, A. F. and Lowenstein, J. M. (1967)Biochem. J.,103, 342.CrossRefGoogle Scholar
  31. Williams, R. J. P. (1982)FEBS Lett.,140, 3.CrossRefGoogle Scholar
  32. Woolfolk, C. A. and Stadtman, E. R. (1967)Arch. Biochem. Biophys.,118, 736.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1985

Authors and Affiliations

  • N. S. Punekar
    • 1
  • C. S. Vaidyanathan
    • 1
  • N. Appaji Rao
    • 1
  1. 1.Department of BiochemistryIndian Institute of ScienceBangaloreIndia

Personalised recommendations