Journal of Genetics

, Volume 82, Issue 3, pp 115–131

Molecular population genetics of theβ-esterase gene cluster ofDrosophila melanogaster



We have investigated nucleotide polymorphism at theβ-esterase gene cluster including theEst-6 gene andψEst-6 putative pseudogene in four samples ofDrosophila melanogaster derived from natural populations of southern Africa (Zimbabwe), Europe (Spain), North America (USA: California), and South America (Venezuela). A complex haplotype structure is revealed in bothEst-6 andψEst-6. Total nucleotide diversity is twice inψEst-6 as inEst-6; diversity is higher in the African sample than in the non-African ones. Strong linkage disequilibrium occurs within theβ-esterase gene cluster in non-African samples, but not in the African one. Intragenic gene conversion events are detected withinEst-6 and, to a much greater extent, withinyEst-6; intergenic gene conversion events are rare. Tests of neutrality with recombination are significant for theβ-esterase gene cluster in the non-African samples but not significant in the African one. We suggest that the demographic history (bottleneck and admixture of genetically differentiated populations) is the major factor shaping the pattern of nucleotide polymorphism in theb-esterase gene cluster. However there are some ’footprints’ of directional and balancing selection shaping specific distribution of nucleotide polymorphism within the cluster. Intergenic epistatic selection betweenEst-6 andψEst-6 may play an important role in the evolution of theβ-esterase gene cluster preserving the putative pseudogene from degenerative destruction and reflecting possible functional interaction between the functional gene and the putative pseudogene.Est-6 andyEst-6 may represent an indivisible intergenic complex (‘intergene’) in which each single component (Est-6 orψEst-6) cannot separately carry out the full functional role.


DNA polymorphism Drosophila melanogaster Est-6 ψEst-6 Drosophila colonization positive selection epistatic selection intergene potogene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andolfatto P. 2001 Contrasting patterns of X-linked and autosomal nucleotide variation inDrosophila melanogaster andDrosophila simulans.Mol. Biol. Evol. 18, 279–290.PubMedGoogle Scholar
  2. Aquadro C. F., Bauer V. and Reed F. A. 2001 Genome-wide variation in the human and fruitfly: a comparison.Curr. Opin. Genet. Dev. 11, 627–634.PubMedCrossRefGoogle Scholar
  3. Ayala F. J., Balakirev E. S. and Sáez A. G. 2002 Genetic polymorphism at two linked loci,Sod andEst-6, inDrosophila melanogaster.Gene 300, 19–29.PubMedCrossRefGoogle Scholar
  4. Athma P. and Peterson T. 1991Ac induces homologous recombination at the maizeP locus.Genetics 128, 163–173.PubMedGoogle Scholar
  5. Bailis A. M. and Rothstein R. 1990 A defect in mismatch repair inSaccharomyces cerevisiae stimulates ectopic recombination between homeologous genes by an excision repair dependent process.Genetics 126, 535–547.PubMedGoogle Scholar
  6. Balakirev E. S. and Ayala F. J. 1996 Is esterase-P encoded by a cryptic pseudogene inDrosophila melanogaster?Genetics 144, 1511–1518.PubMedGoogle Scholar
  7. Balakirev E. S. and Ayala F. J. 2003a Nucleotide variation of theEst-6 gene region in natural populations ofDrosophila melanogaster.Genetics 165, 1901–1914.PubMedGoogle Scholar
  8. Balakirev E. S. and Ayala F. J. 2003b Pseudogenes: are they "junk" or functional DNA?Annu. Rev. Genet. 37, 123–151.PubMedCrossRefGoogle Scholar
  9. Balakirev E. S. and Ayala F. J. 2003c Pseudogenes are not junk DNA. InEvolutionary theory and processes: modern horizons (ed. S. P. Wasser), pp. 1–17. Kluwer, Amsterdam.Google Scholar
  10. Balakirev E. S. and Ayala F. J. 2004 Nucleotide variation in thetinman andbagpipe homeobox genes ofDrosophila melanogaster. Genetics (in press).Google Scholar
  11. Balakirev E. S., Balakirev E. I., Rodriguez-Trelles F. and Ayala F. J. 1999 Molecular evolution of two linked genes,Est-6 andSod, inDrosophila melanogaster.Genetics 153, 1357–1369.PubMedGoogle Scholar
  12. Balakirev E. S., Balakirev E. I. and Ayala F. J. 2002 Molecular evolution of theEst-6 gene inDrosophila melanogaster: Contrasting patterns of DNA variability in adjacent functional regions.Gene 288, 167–177.PubMedCrossRefGoogle Scholar
  13. Balakirev E. S., Chechetkin V. R., Lobzin V. V. and Ayala F. J. 2003 DNA polymorphism in theb-esterase gene cluster ofDrosophila melanogaster.Genetics 164, 533–544.PubMedGoogle Scholar
  14. Begun D. J. and Aquadro C. F. 1993 African and North American populations ofDrosophila melanogaster are very different at the DNA level.Nature 365, 548–550.PubMedCrossRefGoogle Scholar
  15. Bénassi V., Depaulis F., Meghlaoui G. K. and Veuille M. 1999 Partial sweeping of variation at theFbp2 locus in a West African population ofDrosophila melanogaster.Mol. Biol. Evol. 16, 347–353.PubMedGoogle Scholar
  16. Borts R. H. and Haber J. E. 1987 Meiotic recombination in yeast: alteration by multiple heterozygosities.Science 237, 1459–1465.PubMedCrossRefGoogle Scholar
  17. Brady J. P. and Richmond R. C. 1992 An evolutionary model for the duplication and divergence of esterase genes inDrosophila.J. Mol. Evol. 34, 506–521.PubMedCrossRefGoogle Scholar
  18. Brady J. P., Richmond R. C. and Oakeshott J. G. 1990 Cloning of the esterase-5 locus fromDrosophila pseudoobscura and comparison with its homologue inD. melanogaster.Mol. Biol. Evol. 7, 525–546.PubMedGoogle Scholar
  19. Brosius J. and Gould S. J. 1992 On "genomenclature": A comprehensive (and respectful) taxonomy for pseudogenes and other "junk DNA".Proc. Natl. Acad. Sci. USA 89, 10706–10710.PubMedCrossRefGoogle Scholar
  20. Chambers S. R., Hunter N., Louis E. J. and Borts R. H. 1996 The mismatch repair system reduces meiotic homeologous recombination and stimulates recombination-dependent chromosome loss.Mol. Cell. Biol. 16, 6110–6120.PubMedGoogle Scholar
  21. Chen W. and Jinks-Robertson S. 1999 The role of mismatch repair machinery in regulating mitotic and meiotic recombination between diverged sequences in yeast.Genetics 151, 1299–1313.PubMedGoogle Scholar
  22. Claverys J. P. and Lacks S. A. 1986 Heteroduplex deoxyribonucleic acid base mismatch repair in bacteria.Microbiol. Rev. 50, 133–165.PubMedGoogle Scholar
  23. Collet C., Nielsen K. M., Russell R. J., Karl M., Oakeshott J. G. and Richmond R. C. 1990 Molecular analysis of duplicated esterase genes inDrosophila melanogaster.Mol. Biol. Evol. 7, 9–28.PubMedGoogle Scholar
  24. Collick A. and Jeffreys A. J. 1990 Detection of a novel minisatellite-specific DNA-binding protein.Nucl. Acids Res. 18, 625–629.PubMedCrossRefGoogle Scholar
  25. Comeron J. M., Kreitman M. and Aguadé M. 1999 Natural selection on synonymous sites is correlated with gene length and recombination inDrosophila.Genetics 151, 239–249.PubMedGoogle Scholar
  26. Cooke P. H. and Oakeshott J. G. 1989 Amino acid polymorphisms for esterase-6 in Drosophila melanogaster.Proc. Natl. Acad. Sci. USA 86, 1426–1430.PubMedCrossRefGoogle Scholar
  27. Datta A., Adjiri A., New L., Grouse G. F. and Jinks-Robertson S. 1996 Mitotic crossovers between diverged sequences are regulated by mismatch repair proteins inSaccharomyces cerevisiae.Mol. Cell. Biol. 176, 1085–1093.Google Scholar
  28. Datta A., Hendrix M., Lipsitch M. and Jinks-Robertson S. 1997 Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast.Proc. Natl. Acad. Sci. USA 94, 9757–9762.PubMedCrossRefGoogle Scholar
  29. David J. R. and Capy P. 1988 Genetic variation ofDrosophila melanogaster natural populations.Trends Genet. 4, 106–111.PubMedCrossRefGoogle Scholar
  30. De Wind N., Dekker M., Berns A., Radman M. and Riele H. T. 1995 Inactivation of the mouseMsh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination and predisposition to cancer.Cell 82, 321–330.PubMedCrossRefGoogle Scholar
  31. Dumancic M. M., Oakeshott J. G., Russell R. J. and Healy M. J. 1997 Characterization of theEstP protein inDrosophila melanogaster and its conservation in Drosophilids.Biochem. Genet. 35, 251–271.PubMedCrossRefGoogle Scholar
  32. East P. D., Graham A. and Whitington G. 1990 Molecular isolation and preliminary characterization of a duplicated esterase locus inDrosophila buzzatii. InEcological and evolutionary genetics of Drosophila (ed. J. S. F. Barker, W. T. Starmer and R. J. MacIntyre), pp. 389–406. Plenum, New York.Google Scholar
  33. Elliott B., Richardson C., Winderbaum J., Nickoloff J. A. and Jasin M. 1998 Gene conversion tracts in mammalian cells from double-strand break repair.Mol. Cell. Biol. 18, 93–101.PubMedGoogle Scholar
  34. Engels W. R. 1989 P elements inDrosophila melanogaster. InMobile DNA (ed. D. Berg and M. Howe), pp. 437–484. American Society for Microbiology, Washington, D. C.Google Scholar
  35. Filatov D. A. and Charlesworth D. 1999 DNA polymorphism, haplotype structure and balancing selection in the Leavenworthia PgiC locus.Genetics 153, 1423–1434.PubMedGoogle Scholar
  36. Frisse L., Hudson R. R., Bartoszewicz A., Wall J. D., Donfack J. and Di Rienzo A. 2001 Gene conversion and different population histories may explain the contrast between polymerphism and linkage disequilibrium levels.Am. J. Hum. Genet. 69, 831–843.PubMedCrossRefGoogle Scholar
  37. Game A. Y. and Oakeshott J. G. 1990 Associations between restriction site polymorphism and enzyme activity variation for esterase 6 inDrosophila melanogaster.Genetics 126, 1021–1031.PubMedGoogle Scholar
  38. Giribet G. and Wheeler W. C. 1999 On gaps.Mol. Phylogenet. Evol. 13, 132–143.PubMedCrossRefGoogle Scholar
  39. Gomez G. A. and Hasson E. 2003 Transpecific polymorphisms in an inversion linked esterase locus inDrosophila buzzatii.Mol. Biol. Evol. 20, 410–423.PubMedCrossRefGoogle Scholar
  40. Goss P. J. E. and Lewontin R. C. 1996 Detecting heterogeneity of substitution along DNA and protein sequences.Genetics 143, 589–602.PubMedGoogle Scholar
  41. Graur D. and Li W.-H. 2000Fundamentals of molecular evolution, 2nd edition. Sinauer, Sunderland.Google Scholar
  42. Gromko M. H., Gilbert D. F. and Richmond R. C. 1984 Sperm transfer and use in the multiple mating system ofDrosophila. InSperm competition and the evolution of animal mating systems (ed. R. L. Smith), pp. 371–426. Academic Press, New York.Google Scholar
  43. Harris S., Rudnicki K. S. and Haber J. E. 1993 Gene conversions and crossing over during homologous and homeologous ectopic recombination inSaccharomyces cerevisiae.Genetics 135, 5–16.PubMedGoogle Scholar
  44. Hasson E. and Eanes W. F. 1996 Contrasting histories of three gene regions associated withIn(3L)Payne ofDrosophila melanogaster.Genetics 144, 1565–1575.PubMedGoogle Scholar
  45. Hasson E., Wang I.-N., Zeng L.-W., Kreitman M. and Eanes W. F. 1998 Nucleotide variation in the Triosephosphate isomerase (Tpi) locus ofDrosophila melanogaster andDrosophila simulans.Mol. Biol. Evol. 15, 756–769.PubMedGoogle Scholar
  46. Healy M. J., Dumancic M. M. and Oakeshott J. G. 1991 Biochemical and physiological studies of soluble esterases fromDrosophila melanogaster.Biochem. Genet. 29, 365–388.PubMedCrossRefGoogle Scholar
  47. Healy M. J., Dumancic M. M., Cao A. and Oakeshott J. G. 1996 Localization of sequences regulating ancestral and acquired sites of esterase 6 activity inDrosophila melanogaster.Mol. Biol. Evol. 13, 784–797.PubMedGoogle Scholar
  48. Hudson R. R. 1983 Properties of a neutral allele model with intragenic recombination.Theor. Popul. Biol. 23, 183–201.PubMedCrossRefGoogle Scholar
  49. Hudson R. R. 1990 Gene genealogies and the coalescent process.Oxf. Surv. Biol. 7, 1–44.Google Scholar
  50. Hudson R. R. 2001 Two-locus sampling distributions and their application.Genetics 159, 1805–1817.PubMedGoogle Scholar
  51. Hudson R. R. and Kaplan N. 1985 Statistical properties of the number of recombination events in the history of a sample of DNA sequences.Genetics 111, 147–164.PubMedGoogle Scholar
  52. Hudson R. R. and Kaplan N. 1988 The coalescent process in models with selection and recombination.Genetics 120, 831–840.PubMedGoogle Scholar
  53. Hudson R. R., Boos D. and Kaplan N. L. 1992a A statistical test for detecting geographic subdivision.Mol. Biol. Evol. 9, 138–151.PubMedGoogle Scholar
  54. Hudson R. R., Slatkin M. and Maddison W. P. 1992b Estimation of levels of gene flow from DNA sequence data.Genetics 132, 583–589.PubMedGoogle Scholar
  55. Hudson R. R., Bailey K., Skarecky D., Kwiatowski J. and Ayala F. J. 1994 Evidence for positive selection in the superoxide dismutase (Sod) region ofDrosophila melanogaster.Genetics 136, 1329–1340.PubMedGoogle Scholar
  56. Hudson R. R., Saez A. G. and Ayala F. J. 1997 DNA variation at theSod locus ofDrosophila melanogaster: an unfolding story of natural selection.Proc. Natl. Acad. Sci. USA 94, 7725–7729.PubMedCrossRefGoogle Scholar
  57. Jeffreys A. J., Wilson V. and Thein S. L. 1985 Hypervariable minisatellite regions in human DNA.Nature 314, 67–73.PubMedCrossRefGoogle Scholar
  58. Karotam J., Delves A. C. and Oakeshott J. G. 1993 Conservation and change in structural and 5’ flanking sequences of esterase 6 in siblingDrosophila species.Genetica 88, 1–28.CrossRefGoogle Scholar
  59. Karotam J., Boyce T. M. and Oakeshott J. G. 1995 Nucleotide variation at the hypervariable esterase 6 isozyme locus ofDrosophila simulans.Mol. Biol. Evol. 12, 113–122.PubMedGoogle Scholar
  60. Kelly J. K. 1997 A test of neutrality based on interlocus associations.Genetics 146, 1197–1206.PubMedGoogle Scholar
  61. King L. M. 1998 The role of gene conversion in determining sequence variation and divergence in theEst-5 gene family inDrosophila pseudoobscura.Genetics 148, 305–315.PubMedGoogle Scholar
  62. Kondrashov F. A., Rogozin I. B., Wolf Y. I. and Koonin E. V. 2002 Selection in the evolution of gene duplication.Genome Biol. 3 (2), research0008.1-0008.9.Google Scholar
  63. Korochkin L. I., Ludwig M. Z., Poliakova E. V. and Philinova M. R. 1987 Some molecular genetic aspects of cellular differentiation inDrosophila.Sov. Sci. Rev. F. 1, 411–466.Google Scholar
  64. Korochkin L., Ludwig M., Tamarina N., Uspensky I., Yenikolopov G., Khechumijan al. 1990 Molecular genetic mechanisms of tissue-specific esterase isozymes and protein expression inDrosophila. InIsozymes: structure, function, and use in biology and medicine (ed. C. Markert and J. Scandalios) pp. 399–440. Wiley-Liss, New York.Google Scholar
  65. Labate J. A., Biermann C. H. and Eanes W. F. 1999 Nucleotide variation at therunt locus inDrosophila melanogaster andDrosophila simulans.Mol. Biol. Evol. 16, 724–731.PubMedGoogle Scholar
  66. Lewontin R. C. 1964 The interaction of selection and linkage. I. General considerations; heterotic models.Genetics 49, 49–67.PubMedGoogle Scholar
  67. Lowe B., Mathern J. and Hake S. 1992 ActiveMutator elements suppress the knotted phenotype and increase recombination at theKn1-0 tandem duplication.Genetics 132, 813–822.PubMedGoogle Scholar
  68. Ludwig M. Z., Tamarina N. A. and Richmond R. C. 1993 Localization of sequences controlling the spatial, temporal, and sex-specific expression of the esterase 6 locus inDrosophila melanogaster adults.Proc. Natl. Acad. Sci. USA 90, 6233–6237.PubMedCrossRefGoogle Scholar
  69. Lukacsovich T. and Waldman A. S. 1999 Suppression of intrachromosomal gene conversion in mammalian cells by small degrees of sequence divergence.Genetics 151, 1559–1568.PubMedGoogle Scholar
  70. Lynch M. and Conery J. S. 2000 The evolutionary fate and consequences of duplicate genes.Science 290, 1151–1155.PubMedCrossRefGoogle Scholar
  71. Lynch M., O’Hely M., Walsh B. and Force A. 2001 The probability of preservation of a newly arisen gene duplicate.Genetics 159, 1789–1804.PubMedGoogle Scholar
  72. McDonald J. H. 1996 Detecting non-neutral heterogeneity across a region of DNA sequence in the ratio of polymorphism to divergence.Mol. Biol. Evol. 13, 253–260.PubMedGoogle Scholar
  73. McDonald J. H. 1998 Improved tests for heterogeneity across a region of DNA sequence in the ratio of polymorphism to divergence.Mol. Biol. Evol. 15, 377–384.PubMedGoogle Scholar
  74. McVean G. A. T. 2001 What do patterns of genetic variability reveal about mitochondrial recombination?Heredity 87, 613–620.PubMedCrossRefGoogle Scholar
  75. McVean G., Awadalla P. and Fearnhead P. 2002 A coalescentbased method for detecting and estimating recombination from gene sequences.Genetics 160, 1231–1241.PubMedGoogle Scholar
  76. Matic I., Rayssiguier C. and Radman M. 1995 Interspecies gene exchange in bacteria: the role of SOS and mismatch repair systems in evolution of species.Cell 80, 507–515.PubMedCrossRefGoogle Scholar
  77. Mazet F. and Shimeld S. M. 2002 Gene duplication and divergence in the early evolution of vertebrates.Curr. Opin. Genet. Dev. 12, 393–396.PubMedCrossRefGoogle Scholar
  78. Moriyama E. N. and Powell J. R. 1996 Intraspecific nuclear DNA variation inDrosophila.Mol. Biol. Evol. 13, 261–277.PubMedGoogle Scholar
  79. Mousset S., Brazier L., Cariou M.-L., Chartois F., Depaulis F. and Veuille M. 2003 Evidence of a high rate of selective sweeps in AfricanDrosophila melanogaster.Genetics 163, 599–609.PubMedGoogle Scholar
  80. Myers M., Richmond R. C. and Oakeshott J. G. 1988 On the origins of esterases.Mol. Biol. Evol. 5, 113–119.PubMedGoogle Scholar
  81. Oakeshott J. G., Collet C., Phillis R., Nielsen K. M., Russell R. J., Chambers G. K., Ross V. and Richmond R. C. 1987 Molecular cloning and characterization of esterase 6, a serine hydrolase fromDrosophila.Proc. Natl. Acad. Sci. USA 84, 3359–3363.PubMedCrossRefGoogle Scholar
  82. Oakeshott J. G., van Papenrecht E. A., Boyce T. M., Healy M. J. and Russell R. J. 1993 Evolutionary genetics ofDrosophila esterases.Genetica 90, 239–268.PubMedCrossRefGoogle Scholar
  83. Oakeshott J. G., Boyce T. M., Russell R. J. and Healy M. J. 1995 Molecular insights into the evolution of an enzyme; esterase 6 inDrosophila.Trends Ecol. Evol. 10, 103–110.CrossRefGoogle Scholar
  84. Odgers W. A., Healy M. J. and Oakeshott J. G. 1995 Nucleotide polymorphism in the 5’ promoter region of esterase 6 inDrosophila melanogaster and its relationship to enzyme activity variation.Genetics 141, 215–222.PubMedGoogle Scholar
  85. Odgers W. A., Aquadro C. F., Coppin C. W., Healy M. J. and Oakeshott J. G. 2002 Nucleotide polymorphism in theEst6 promoter, which is widespread in derived populations ofDrosophila melanogaster, changes the level of esterase 6 expressed in the male ejaculatory duct.Genetics 162, 785–797.PubMedGoogle Scholar
  86. Porter G., Westmoreland J., Priebe S. and Resnick M. A. 1996 Homologous and homeologous intermolecular gene conversion are not differentially affected by mutations in the DNA damage or mismatch repair genesRAD1, RAD50, RAD52, RAD54, PMS1, orMSH2.Genetics 143, 755–767.PubMedGoogle Scholar
  87. Preston C. R. and Engels W. R. 1996 P-element-induced male recombination and gene conversion inDrosophila.Genetics 144, 1611–1622.PubMedGoogle Scholar
  88. Prince V. E. and Pickett F. B. 2002 Splitting pairs: the diverging fates of duplicated genes.Nat. Rev. Genet. 3, 827–837.PubMedCrossRefGoogle Scholar
  89. Procunier W. S., Smith J. J. and Richmond R. C. 1991 Physical mapping of theesterase-6 locus ofDrosophila melanogaster.Genetica 84, 203–208.PubMedCrossRefGoogle Scholar
  90. Rayssiguier C., Thaler D. S. and Radman M. 1989 The barrier to recombination betweenEscherichia coli andSalmonella typhimurium is disrupted in mismatch repair mutants.Nature 342, 396–401.PubMedCrossRefGoogle Scholar
  91. Richmond R. C., Gilbert D. G., Sheehan K. B., Gromko M. H. and Butterworth F. M. 1980 Esterase 6 and reproduction inDrosophila melanogaster.Science 207, 1483–1485.PubMedCrossRefGoogle Scholar
  92. Richmond R. C., Nielsen K. M., Brady J. P. and Snella E. M. 1990 Physiology, biochemistry and molecular biology of theEst-6 locus inDrosophila melanogaster. InEcological and evolutionary genetics of Drosophila (ed. J. S. F. Barker, W. T. Starmer and R. J. MacIntyre), pp. 273–292. Plenum, New York.Google Scholar
  93. Richter B., Long M., Lewontin R. C. and Nitasaka E. 1997 Nucleotide variation and conservation at thedpp locus, a gene controlling early development inDrosophila.Genetics 145, 311–323.PubMedGoogle Scholar
  94. Rozas J. and Rozas R. 1999 DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis.Bioinformatics 15, 174–175.PubMedCrossRefGoogle Scholar
  95. Sawyer S. A. 1989 Statistical tests for detecting gene conversion.Mol. Biol. Evol. 6, 526–538.PubMedGoogle Scholar
  96. Sawyer S. A. 1999 GENECONV: A computer package for the statistical detection of gene conversion. Distributed by the author. Department of Mathematics, Washington University, St Louis, USA.Google Scholar
  97. Seager R. D. and Ayala F. J. 1982 Chromosome interactions inDrosophila melanogaster. I. Viability studies.Genetics 102, 467–483.PubMedGoogle Scholar
  98. Selva E. M., New L., Crouse G. F. and Lahue R. S. 1995 Mismatch correction acts as a barrier to homologous recombination inSaccharomyces cerevisiae.Genetics 139, 1175–1188.PubMedGoogle Scholar
  99. Shen P. and Huang H. V. 1986 Homologous recombination inEscherichia coli: dependence on substrate length and homology.Genetics 112, 441–457.PubMedGoogle Scholar
  100. Shen P. and Huang H. V. 1989 Effect of base pair mismatches on recombination via the RecBCD pathway.Mol. Gen. Genet. 218, 358–360.PubMedCrossRefGoogle Scholar
  101. Sherratt D. J. (ed.) 1995Mobile genetic elements. Oxford University Press, Oxford.Google Scholar
  102. Singh R. S. and Long A. D. 1992 Geographic variation in Drosophila: from molecules to morphology and back.Trends Ecol. Evol. 7, 340–345.CrossRefGoogle Scholar
  103. Strobeck C. 1983 Expected linkage disequilibrium for a neutral locus linked to a chromosomal arrangement.Genetics 103, 545–555.PubMedGoogle Scholar
  104. Svoboda Y., Robson M. and Sved J. A. 1996 P-element-induced male recombination can be produced inDrosophila melanogaster by combining end-deficient elements intrans.Genetics 139, 1601–1610.Google Scholar
  105. Teeter K., Naeemuddin M., Gasperini R., Zimmerman E., White K. P., Hoskins R. and Gibson G. 2000 Haplotype dimorphism in a SNP collection fromDrosophila melanogaster.J. Exp. Zool. 288, 63–75.PubMedCrossRefGoogle Scholar
  106. Thompson J. D., Higgins D. G. and Gibson T. J. 1994 CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Nucl. Acids Res. 22, 4673–4680.PubMedCrossRefGoogle Scholar
  107. Thornton K. and Long M. 2002 Rapid divergence of gene duplicates on theDrosophila melanogaster X chromosome.Mol. Biol. Evol. 19, 918–925.PubMedGoogle Scholar
  108. Treco D. and Arnheim N. 1986 The evolutionarily conserved repetitive sequence d(TG AG)n promotes reciprocal exchange and generates unusual recombinant tetrads during yeast meiosis.Mol. Cell. Biol. 6, 3934–3947.PubMedGoogle Scholar
  109. Van de Peer Y., Taylor J. S., Braasch I. and Meyer A. 2001 The ghost of selection past: rates of evolution and functional divergence of anciently duplicated genes.J. Mol. Evol. 53, 436–446.PubMedCrossRefGoogle Scholar
  110. Wagner A. 2002 Asymmetric functional divergence of duplicate genes in yeast.Mol. Biol. Evol. 19, 1760–1768.PubMedGoogle Scholar
  111. Waldman A. S. and Liskay R. M. 1987 Differential effects of base-pair mismatch on intrachromosomal versus extrachromosomal recombination in mouse cells.Proc. Natl. Acad. Sci. USA 84, 5340–5344.PubMedCrossRefGoogle Scholar
  112. Wall J. D. 1999 Recombination and the power of statistical tests of neutrality.Genet. Res. 74, 65–79.CrossRefGoogle Scholar
  113. Watterson G. A. 1975 On the number of segregating sites in genetical models without recombination.Theor. Popul. Biol. 10, 256–276.CrossRefGoogle Scholar
  114. Yang D. and Waldman A. S. 1997 Fine-resolution analysis of products of intrachromosomal homeologous recombination in mammalian cells.Mol. Cell. Biol. 17, 3614–3628.PubMedGoogle Scholar
  115. Yenikolopov G. N., Malevantschuk O. A., Peunova N. I., Sergeev P. V. and Georgiev G. P. 1989Est locus ofDrosophila virilis contains two related genes.Dokl. Acad. Nauk SSSR 306, 1247–1249 (in Russian).Google Scholar

Copyright information

© Indian Academy of Sciences 2003

Authors and Affiliations

  1. 1.Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineUSA
  2. 2.Institute of Marine BiologyVladivostokRussia
  3. 3.Academy of Ecology, Marine Biology, and BiotechnologyFar Eastern State UniversityVladivostokRussia

Personalised recommendations