Advertisement

Journal of Genetics

, Volume 84, Issue 3, pp 295–301 | Cite as

Genetic diversity and bottleneck studies in the Marwari horse breed

  • A. K. Gupta
  • M. Chauhan
  • S. N. Tandon
  • Sonia
Research Article

Abstract

Genetic diversity within the Marwari breed of horses was evaluated using 26 different microsatellite pairs with 48 DNA samples from unrelated horses. This molecular characterisation was undertaken to evaluate the problem of genetic bottlenecks also, if any, in this breed. The estimated mean (± s.e.) allelic diversity was 5.9 (± 2.24), with a total of 133 alleles. A high level of genetic variability within this breed was observed in terms of high values of mean (±s.e.) effective number of alleles (3.3 ± 1.27), observed heterozygosity (0.5306 ± 0.22), expected Levene’s heterozygosity (0.6612 ± 0.15), expected Nei’s heterozygosity (0.6535 ± 0.14), and polymorphism information content (0.6120 ± 0.03). Low values of Wright’s fixation index, FIS (0.2433 ± 0.05) indicated low levels of inbreeding. This basic study indicated the existence of substantial genetic diversity in the Marwari horse population. No significant genotypic linkage disequilibrium was detected across the population, suggesting no evidence of linkage between loci. A normal ‘L’ shaped distribution of mode-shift test, non-significant heterozygote excess on the basis of different models, as revealed from Sign, Standardized differences and Wilcoxon sign rank tests as well as non-significantM ratio value suggested that there was no recent bottleneck in the existing Marwari breed population, which is important information for equine breeders. This study also revealed that the Marwari breed can be differentiated from some other exotic breeds of horses on the basis of three microsatellite primers.

Keywords

microsatellite genetic diversity bottleneck Marwari horse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arranz J. J., Bayon Y. and San-Primitivo F. 2001 Genetic variation at microsatellite loci in Spanish sheep.Small Ruminant Res. 39, 3–10.CrossRefGoogle Scholar
  2. Bassam J. B., Caetano-Anolles G. and Gresshoff P. M. 1991 Fast and sensitive silver staining of DNA in polyacrylamide gels.Anal. Biochem. 196, 82–83.CrossRefGoogle Scholar
  3. Bjornstad G. and Roed K. H. 2001 Breed demarcation and potential for breed allocation of horses assessed by microsatellite markers.Anim. Genet. 32, 59–65.PubMedCrossRefGoogle Scholar
  4. Botstein D., White R. I., Skolnick M. and Davis R. W. 1980 Construction of genetic linkage maps in man using restriction fragment length polymorphism.Amer. J. Hum. Genet. 32, 314–31.PubMedGoogle Scholar
  5. Bradley D. G., MacHugh D. E., Cunningham P. and Loftus R. T. 1996 Mitochondrial diversity and the origins of African and European cattle.Proc. Natl. Acad. Sci. USA 93, 5131–5135.PubMedCrossRefGoogle Scholar
  6. Canon J., Checa M. L., Carleos C., Vega-Pla J. L., Vallejo M. and Dunner S. 2000 The genetic structure of Spanish Cellic horse breeds inferred from microsatellite data.Anim. Genet. 31, 39–48.PubMedCrossRefGoogle Scholar
  7. Chauhan M 2004Molecular characterization and establishment of genetic relationship between two different breeds of indigenous equines using microsatellite markers. Ph. D thesis, CCS Haryana Agricultural University, Hisar, India.Google Scholar
  8. Chauhan M., Gupta A. K. and Dhillon S. 2004 Genetic characterization of Indian Spiti horses.J. Genet. 83, 291–295.PubMedCrossRefGoogle Scholar
  9. Coogle L. and Bailey E. 1998 Equine dinucleotide repeat loci LEX064 through LEX070.Anim. Genet. 30, 66–80.Google Scholar
  10. Cornuet J. M. and Luikart G. 1996 Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data.Genetics 144, 2001–2014.PubMedGoogle Scholar
  11. Eggleston-Stott M. L., Valle A. D., Bautista M., Dileanis S., Wictum E. and Bowling A. T. 1997 Nine equine dinucleotide repeats at microsatellite loci UCDEQ136, UCDEQ405, UCDEQ412, UCDEQ425, UCDEQ437, UCDEQ467, UCDEQ487, UCDEQ502 and UCDEQ505.Anim. Genet. 28, 370–83.PubMedCrossRefGoogle Scholar
  12. Eggleston-Stott M. L., Valle A. D., Bowling A. T., Bautista M. and Malyi W. 1996 Four equine dinucleotide repeats at microsatellite loci UCDEQ5, UCDEQ14, UCDEQ46 and UCDEQ62.Anim. Genet. 27, 129.PubMedGoogle Scholar
  13. Ellegren H. Johansson M., Sandberg K. and Andersson L. 1992 Cloning of highly polymorphic equine microsatellites in horse.Anim. Genet. 23, 133–42.PubMedCrossRefGoogle Scholar
  14. Fan B., Wang Z. G., Li Y. J., Zhao X. L., Liu B., Zhao S. H., Yu M., Li M. H., Chen S. L., Xiong T. A. and Li K. 2002 Genetic variation analysis within and among Chinese indigenous swine populations using microsatellite markers.Anim. Genet. 33, 422–427.PubMedCrossRefGoogle Scholar
  15. Garza J. C. and Williamson E. G. 2001 Detection of reduction in population size using data from microsatellite loci.Mol. Ecol. 10, 305–318.PubMedCrossRefGoogle Scholar
  16. Guo S. W. and Thompson E. A. 1992 Performing the exact test of Hardy-Weinberg proportion for multiple alleles.Biometrics 48, 361–372.PubMedCrossRefGoogle Scholar
  17. Hall S. J. G. and Bradley D. G. 1995 Conserving livestock breed diversity.Trends Ecol. Evol. 10, 267–270.CrossRefGoogle Scholar
  18. Ivankovic A., Kavar T., Caput P., Mioc B., Pavic V. and Dovc V. 2002 Genetic diversity of three donkey populations in Croatian coastal region.Anim. Genet. 33b, 169–177.CrossRefGoogle Scholar
  19. Kakoi H., Tozaki T., Hirota K. and Mashima S. 1999 Genetic polymorphisms of equine microsatellite loci: TKY 16, TKY 19 and TKY 21.Anim. Genet. 30, 68–69.PubMedCrossRefGoogle Scholar
  20. Kantanen J., Olsaker I., Holm L. E., Lien S., Vilkki J., Brusgaard K., Eythorsdottir E., Danell B. and Adalsteinsson S. 2000 Genetic diversity and population structure of 20 north European cattle breeds.J. Heredity 91, 446–457.CrossRefGoogle Scholar
  21. Lindgren G., Persson H. and Ellegren H. 1999 Five equine dinucleotide microsatellite loci HTG17, HTG20, HTG21, HTG28 and HTG31.Anim. Genet. 30, 70–71.PubMedCrossRefGoogle Scholar
  22. Luikart G. 1997Usefulness of molecular markers for detecting population bottlenecks and monitoring genetic change. Ph. D. thesis, University of Montana, Missoula, USA.Google Scholar
  23. Luikart G. and Cornuet J. M. 1997 Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data.Conserv. Biol. 12, 228–237.CrossRefGoogle Scholar
  24. Luikart G. L., Allendrof F. W., Cornuet J. M. and Sherwin, W. B. 1998 Distortion of allele frequency distributions provides a test for recent population bottlenecks.J. Heredity. 89, 238–247.CrossRefGoogle Scholar
  25. Manly B. F. J. 1985The statistics of natural selection. Chapman and Hall, London.Google Scholar
  26. May R. M. 1990 Taxonomy as destiny.Nature 347, 129–130.CrossRefGoogle Scholar
  27. Meyer A. H., Valberg S. J., Hillers K. R., Schweitzer J. K. and Mickelson J. R. 1997 Sixteen new polymorphic equine microsatellites.Anim. Genet. 28, 58–71.CrossRefGoogle Scholar
  28. Nei M. 1978 Estimation of average heterozygosity and genetic distance from a small number of individuals.Genetics 89, 583–590.PubMedGoogle Scholar
  29. Raymond M. and Rousset F. 1999 GENEPOP (version 3.1d): An updated version of GENEPOP (v. 1.2) described in: Raymond, M. and Rousset, F. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism.J. Heredity1995.86, 248–249.Google Scholar
  30. Sambrook J., Fritsch E. F. and Maniatis T. 1989Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbour Press, New York.Google Scholar
  31. Singh M. K., Yadav M. P. and Mehta N. T. 2002 Characterization of Marwari and Kathiawari breed of horses.Ind. J. Anim. Sci. 72, 366–70.Google Scholar
  32. Singhvi N. M. 2001 Conservation and management of equines.Ind. J. Anim. Genet. Breeding 23, 292–95.Google Scholar
  33. Swinburne J. E., Lockhart L., Aldridge V., Marti E., Breen M. and Binns M. M. 2000 Characterization of 25 new physically mapped horse microsatellite loci: AHT 24–48.Anim. Genet. 31, 228–41.CrossRefGoogle Scholar
  34. Swinburne J. E., Marti E., Breen E. and Binns M. M. 1997 Characterization of 12 new horse microsatellite loci: AHT12-AHT23.Anim. Genet. 28, 453–61.PubMedGoogle Scholar
  35. Takezaki N. and Nei M. 1996 Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA.Genetics 144, 389–99.PubMedGoogle Scholar
  36. vanHaeringen H., Bowling A. T., Stott M. L., Lenstra J. A. and Zwangstra K. A. 1994 A highly polymorphic horse microsatellite locus: VHL20.Anim. Genet. 25, 207.PubMedCrossRefGoogle Scholar
  37. vanHaeringen W. A., van de van deGoor L. H. P., van derHout N. and Lenstra J. A. 1998 Characterization of 24 equine microsatellite loci.Anim. Genet. 29, 150–60.CrossRefGoogle Scholar
  38. Yadav M. P., Ghei G. C. and Tandon S. N. 2001 Equine genetic resources in India and their conservation.Ind. J. Anim. Genet. Breeding 23, 296–301.Google Scholar
  39. Yeh F. C., Boyle T., Rongcal Y., Ye Z. and Xian J. M. 1999POPGENE version 3.31, a Microsoft Windows based free ware for population genetic analysis. University of Alberta, Edmonton.Google Scholar

Copyright information

© Indian Academy of Sciences 2005

Authors and Affiliations

  1. 1.National Research Centre on EquinesHisarIndia
  2. 2.Guru Jambeshwar UniversityHisarIndia

Personalised recommendations