Advertisement

Lung

, Volume 165, Issue 1, pp 61–77 | Cite as

Alpha-1-antitrypsin and the pathogenesis of emphysema

  • R. A. Stockley
Review

Abstract

The review examines the relationship between alpha1-antitrypsin (α 1AT) and emphysema. Although other defects occur in subjects with alpha1-antitrypsin deficiency, it seems likely that a reduction in inhibition due to loss of this inhibitor explains their emphysema.

There is a great deal of controversy, however, concerning the role of alpha1-antitrypsin in subjects without inherited deficiency. There is uncertainty about the presence and function of other elastase inhibitors in the peripheral lung. The function of lungα 1AT and the presence of elastase activity are dependent upon the techniques used and this probably accounts for different results between research groups. In addition, other relevant factors such as which enzymes cause lung elastolysis, control of neutrophil chemotaxis, and mechanisms of elastin synthesis and repair are less well studied. The overall conclusion is that many aspects of the elastase/antielastase hypothesis of emphysema are poorly understood. Without further information the true role ofα 1AT will remain largely speculative.

Key words

Alpha-1-antitrypsin Emphysema Elastin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abboud RT, Fera T, Richter A, Tabona MZ, Johal S (1985) Acute effect of smoking on the functional activity of alpha1 protease inhibitor in bronchoalveolar lavage fluid. Am Rev Respir Dis 131:79–85PubMedGoogle Scholar
  2. 2.
    Abrams WR, Cohen AB, Damiano VV, Eliraz A, Kimbel DR, Meranze DR, Weinbaum G (1981) A model of decreased functionalα-1-proteinase inhibitor. J Clin Invest 68:1132–1139PubMedCrossRefGoogle Scholar
  3. 3.
    Abrams WR, Fein AM, Kucich U, Kueppers F, Yamada H, Kuzmowycz T, Morgan L, Lippman M, Goldberg SK and Weinbaum G (1984) Proteinase inhibitory function in inflammatory lung disease. Am Rev Respir Dis 129:735–741PubMedGoogle Scholar
  4. 4.
    Afford SC, Stockley RA, Kramps JA, Dijkman JH, Burnett D (1985) Concentration of bronchoalveolar lavage fluid by ultrafiltration: evidence of differential protein loss and functional inactivation of proteinase inhibitors. Anal Biochem 151:125–130PubMedCrossRefGoogle Scholar
  5. 5.
    Banda MJ, Clark EJ, Werb Z (1985) Regulation of alpha1 proteinase inhibitor function by rabbit alveolar macrophages. Evidence for proteolytic rather than oxidative inactivation. J Clin Invest 75:1758–1762PubMedCrossRefGoogle Scholar
  6. 6.
    Bata J, Revillard J-P (1981) Interaction betweenα 1antitrypsin and lymphocyte surface proteases: immunoregulatory effects. Agents Actions 11:614–616PubMedCrossRefGoogle Scholar
  7. 7.
    Bathhurst IC, Stenflo J, Errington DM, Carrell RW (1983) Translation and processing of normal (PiMM) and abnormal (PiZZ) humanα 1antitrypsin. FEBS Letts 153:270–274CrossRefGoogle Scholar
  8. 8.
    Baumstark JS (1967) Studies on the elastase-serum protein interaction. Arch Biochem Biophys 118:619–630PubMedCrossRefGoogle Scholar
  9. 9.
    Beckman G, Stjernberg NL, Eklund A (1984) Is the PiF allele ofα 1antitrypsin associated with pulmonary disease. Clin Gen 25:491–495CrossRefGoogle Scholar
  10. 10.
    Bohm N, Shah I, Totovic V, Karitzky D (1980) Combinedα 1-antitrypsin andα 2-macroglobulin deficiency syndrome. Pathol Res Pract 168:17–35PubMedGoogle Scholar
  11. 11.
    Boudier C, Pelletier A, Pauli G, Bieth JG (1983) The functional activity ofα 1-proteinase inhibitor in bronchoalveolar lavage fluids from healthy human smokers and non-smokers. Clin Chim Acta 132:309–315PubMedCrossRefGoogle Scholar
  12. 12.
    Bruce RM, Cohen BH, Diamond EL, Fallat RJ, Knudson RJ, Lebowitz MD, Mittman C, Patterson CD, Tockman MS (1984) Collaborative study to assess risk of lung disease in PiMZ phenotype subjects. Am Rev Respir Dis 130:386–390PubMedGoogle Scholar
  13. 13.
    Burnett D, Reynolds J, Ward RV, Afford S, Stockley RA (1986) Tissue inhibitor of metalloproteinases and collagenase inhibitory activity in lung secretions from patients with chronic obstructive bronchitis: effect of corticosteroid treatment. Thorax 41:740–745PubMedCrossRefGoogle Scholar
  14. 14.
    Burnett D, Stockley RA (1985) Cathepsin B-like cysteine proteinase activity in sputum and bronchoalveolar lavage samples: relationship to inflammatory cells and effects of corticosteroids and antibiotic treatment. Clin Sci 68:469–474PubMedGoogle Scholar
  15. 15.
    Campbell EJ, Senior RM, McDonald JA, Cox DL (1982) Proteolysis by neutrophils. Relative importance of cell-substrate contact and oxidative inactivation of proteinase inhibitors in vitro. J Clin Invest 70:845–852PubMedCrossRefGoogle Scholar
  16. 16.
    Carp H, Janoff A (1978) Possible mechanisms of emphysema in smokers. In vitro suppression of serum elastase-inhibitory capacity by fresh cigarette smoke and its prevention by antitoxidants. Am Rev Respir Dis 118:617–621PubMedGoogle Scholar
  17. 17.
    Carp H, Janoff A (1979) In vitro suppression of serum elastase-inhibitory capacity by reactive oxygen species generated by phagocytosing polymorphonuclear leukocytes. J Clin Invest 63:793–797PubMedCrossRefGoogle Scholar
  18. 18.
    Carp H, Janoff A (1983) Modulation of inflammatory cell protease-tissue antiprotease interactions at sites of inflammation by leukocyte-derived oxidants. In: Weissman G (ed) Advances in inflammation research. Raven Press, New York, pp 173–201Google Scholar
  19. 19.
    Carp H, Miller F, Hoidal R, Janoff A (1982) Potential mechanisms of emphysema: alpha1 proteinase inhibitor recovered from lungs of cigarette smokers contains oxidised methionine and has decreased elastase inhibitory capacity. Proc Natl Acad Aci USA 779:2041–2045CrossRefGoogle Scholar
  20. 20.
    Casterline CL, Evans R, Battisla VC, Talamo RC (1978) Selective IgA deficiency and PiZZ-antitrypsin deficiency. Chest 73:885–886PubMedCrossRefGoogle Scholar
  21. 21.
    Chapman HA, Stone OL (1984) Comparison of live human neutrophil and alveolar macrophage elastolytic activity in vitro. Relative resistance of macrophage elastolytic activity to serum and alveolar proteinase inhibitors. J Clin Invest 74:1693–1700PubMedCrossRefGoogle Scholar
  22. 22.
    Cochrane CG, Spragg R, Revak SD (1983) Pathogenesis of the adult respiratory distress syndrome. J Clin Invest 71:754–761PubMedCrossRefGoogle Scholar
  23. 23.
    Cochrane CG, Spragg RG, Revak S, Cohen AB, McGuire WW (1983) The presence of neutrophil elastase and evidence of oxidation activity in bronchoalveolar lavage fluid of patients with adult respiratory distress syndrome. Am Rev Respir Dis 127:S25-S27PubMedGoogle Scholar
  24. 24.
    Cox DW, Woo SLC, Mansfield T (1985) DNA restriction fragments associated with α1-antitrypsin indicate a single origin for deficiency allele PIZ. Nature 316:79–81PubMedCrossRefGoogle Scholar
  25. 25.
    Cupo LN, Pyeritz RE, Olson JL, McPhee SJ, Hutchins GM, McKusick VA (1981) Ehlers Danlos syndrome with abnormal collagen fibrils, sinus of Valsalva aneurysms, myocardial infarction, panacinar emphysema and cerebral heterotopias. Am J Med 71:1051–1058PubMedCrossRefGoogle Scholar
  26. 26.
    Eriksson S (1965) Studies in α1-antitrypsin deficiency. Acta Med Scand 177:(suppl 432) 1–85Google Scholar
  27. 27.
    Forman RC, Judah JD, Colman A (1984) Xenopus oocytes can synthesise but do not secrete the Z variant of human α1antitrypsin. FEBS Letts 168:84–88CrossRefGoogle Scholar
  28. 28.
    Gadek JE, Fells GA, Zimmerman RL, Rennard SI, Crystal RG (1981) Antielastases of the human alveolar structures. Implications for the protease-antiprotease theory of emphysema. J Clin Invest 68:889–898PubMedCrossRefGoogle Scholar
  29. 29.
    Gadek JE, Fellis GA, Crystal RG (1979) Cigarette smoking induces functional antiprotease deficiency in the lower respiratory tract of humans. Science 206:1315–1316PubMedCrossRefGoogle Scholar
  30. 30.
    Gadek JE, Klein HG, Holland PV, Crystal RG (1981) Replacement therapy of alpha1-antitrypsin deficiency. Reversal of protease-antiprotease imbalance within the alveolar structures of PiZ subjects. J Clin Invest 68:1158–1165PubMedCrossRefGoogle Scholar
  31. 31.
    Gelb AF, Klein E, Lieberman J (1977) Pulmonary function in nonsmoking subjects with α1antitrypsin deficiency (MZ phenotype). Am J Med 62:93–98PubMedCrossRefGoogle Scholar
  32. 32.
    George PM, Vissers MCM, Travis J, Winterbourn CC, Carrell RW (1984) A genetically engineered mutant of α1-antitrypsin protects connective tissue from neutrophil damage and may be useful in lung disease. Lancet 2:1426–1428PubMedCrossRefGoogle Scholar
  33. 33.
    Gross P, Pfitzer EH, Tolker E, Babyok MA, Kaschak M (1964) Experimental emphysema: its production with papain in normal and silicotic rats. Arch Environ Health 11:50–58Google Scholar
  34. 34.
    Harel S, Janoff A, Yu SY, Hurewitz A, Bergofsky EH (1980) Desmosine radioimmunoassay for measuring elastin degradation in vivo. Am Rev Respir Dis 122:769–773PubMedGoogle Scholar
  35. 35.
    Harris RB, Heaphy MR, Perry HO (1978) Generalized elastolysis (Cutis laxa). Am J Med 65:815–822PubMedCrossRefGoogle Scholar
  36. 36.
    Hughes JA, Hutchinson DCS, Bellamy D, Dowd DE, Ryan KC, Hugh-Jones P (1982). The influence of cigarette smoking and its withdrawal on the annual change of lung function in pulmonary emphysema. Q J Med 202:115–124Google Scholar
  37. 37.
    Hunninghake GW, Gadek JE, Kawanami O, Ferrans VJ, Crystal RG (1979) Inflammatory and immune processes in the human lung in health and disease: evaluation by bronchoalveolar lavage. Am J Pathol 97:149–205PubMedGoogle Scholar
  38. 38.
    Jackson AH, Hill SL, Afford SC, Stockley RA (1984) Sputum sol-phase proteins and elastase activity in patients with cystic fibrosis. Eur J Respir Dis 65:114–124PubMedGoogle Scholar
  39. 39.
    Janoff A, Carp H, Laurent P, Raju L (1983) The role of oxidative processes in emphysema. Am Rev Respir Dis 127:S31-S38PubMedGoogle Scholar
  40. 40.
    Janoff A, Carp H, Lee DK, Drew RT (1979) Cigarette smoke inhalation decreases α1antitrypsin activity in rat lung. Science 206:1313–1314PubMedCrossRefGoogle Scholar
  41. 41.
    Janoff A, Raju L, Dearing R (1983) Levels of elastase activity in bronchoalveolar lavage fluids of healthy smokers and nonsmokers. Am Rev Respir Dis 127:540–544PubMedGoogle Scholar
  42. 42.
    Janus ED, Phillips NT, Carrel RW (1985) Smoking lung function, and α1-antitrypsin function. Lancet 1:152–154PubMedCrossRefGoogle Scholar
  43. 43.
    Johnson DA (1980) Ozone inactivation of human α1-proteinase inhibitor. Am Rev Respir Dis 121:1031–1038PubMedGoogle Scholar
  44. 44.
    Jones DK, Godden D, Cavanagh P (1985) Alpha-1-antitrypsin deficiency presenting as bronchiectasis. Br J Dis Chest 79:301–304PubMedCrossRefGoogle Scholar
  45. 45.
    Kleinerman J, Bolmer S (1985) Clearance of α1-antiprotease in experimental α1AT deficiency. Am Rev Respir Dis 131 (No 4 part 2):A357Google Scholar
  46. 46.
    Knudson RJ (1985) James Jackson Jr. The young pulmonologist who described familial emphysema. Chest 87:673–676PubMedCrossRefGoogle Scholar
  47. 47.
    Kramps JA, Franken C, Dijkman JH (1984) ELISA for quantitative measurement of low-molecular-weight bronchial protease inhibitor in human sputum. Am Rev Respir Dis 129:959–963PubMedGoogle Scholar
  48. 48.
    Kucich U, Christner P, Lippman M, Fein A, Goldberg A, Kimbel P, Weinbaum G, Rosenbloom J (1983) Immunological measurement of elastin-derived peptides in human serum. Am Rev Respir Dis 127:S28-S30PubMedGoogle Scholar
  49. 49.
    Kucich U, Christner P, Weinbaum G, Rosenbloom J (1980) Immunologic identification of elastin derived peptides in the serum of dogs with experimental emphysema. Am Rev Respir Dis 122:461–465PubMedGoogle Scholar
  50. 50.
    Kueppers F, Bromke BJ (1983) Protease inhibitors in tracheobronchial secretions. J Lab Clin Med 101:747–757PubMedGoogle Scholar
  51. 51.
    Kueppers F, Miller RD, Gordon H, Hepper NG, Offord K (1977) Familial prevalence of chronic obstructive pulmonary disease in a matched pair study. Am J Med 63:336–342PubMedCrossRefGoogle Scholar
  52. 52.
    Kuhn C, Starcher BC (1980) The effect of lathyrogens on the evolution of elastase-induced emphysema. Am Rev Respir Dis 122:453–460PubMedGoogle Scholar
  53. 53.
    Kuhn C, Yu SY, Chraplyvy M, Linder HE, Senior RM (1976) The induction of emphysema with elastase II. Changes in connective tissue. Lab Invest 34:372–380PubMedGoogle Scholar
  54. 54.
    Lam S, Chan Yeung M, Abboud R, Kreutzer D (1980) Interrelationships between serum chemotactic factor inactivator, alpha1antitrypsin deficiency and chronic obstructive lung disease. Am Rev Respir Dis 121:507–512PubMedGoogle Scholar
  55. 55.
    Larson RK, Borman ML (1965) The familial occurrence of chronic obstructive pulmonary disease. Ann Intern Med 63:1001–1008PubMedGoogle Scholar
  56. 56.
    Larson RK, Borman ML, Kueppers F, Fudenberg H (1970) Genetic and environmental determinants of chronic obstructive pulmonary disease. Ann Intern Med 72:627–632PubMedGoogle Scholar
  57. 57.
    Larsson C (1978) Natural history and life expectancy in severe alpha-1-antitrypsin deficiency. Acta Med Scand 206:345–351Google Scholar
  58. 58.
    Larsson C, Dirksen H, Sundstrom G, Eriksson S (1976) Lung function studies in asymptomatic individuals with moderately (PiSZ) and severely (PiZ) reduced levels of α1antitrypsin. Scan J Respir Dis 57:267–280Google Scholar
  59. 59.
    McLeod R, Mack DG, McLeod EG, Campbell EJ, Estes RG (1985) Alveolar macrophage function and inflammatory stimuli in smokers with and without obstructive lung disease. Am Rev Respir Dis 131:377–384PubMedGoogle Scholar
  60. 60.
    Mooren HWD, Kramps JA, Franken C, Meijer CJLM, Dijkman JA (1983) Localisation of a low-molecular-weight bronchial protease inhibitor in the peripheral human lung. Thorax 38:180–183PubMedCrossRefGoogle Scholar
  61. 61.
    Morihara K, Tsuzuki H, Oda K (1979) Protease and elastase of Pseudomonas aeruginosa: inactivation of human plasma α1-proteinase inhibitor. Infect Immun 24:188–193PubMedGoogle Scholar
  62. 62.
    Morrison HM, Kramps JA, Burnett D, Dijkman JH, Stockley RA (1986) Anti-elastases in sputum from patients with α1-proteinase inhibitor deficiency or chronic obstructive bronchitis (submitted for publication)Google Scholar
  63. 63.
    Morrison HM, Kramps JA, Burnett D, Stockley RA (1987) Lung lavage fluid from patients with α1-proteinase deficiency or chornic obstructive bronchitis: anti-elastase function and cell profile. Clin Sci (in press)Google Scholar
  64. 64.
    Morrison HM, Burnett D, Stockley RA (1986) The effect of catalase and methione-5-oxide reductase on oxidized α1-proteinase inhibitor. Biol Chem Hoppe-Seyler 364:371–378Google Scholar
  65. 65.
    Morse JO, Lebowitz MD, Knudson RJ, Burrows B (1977) Relation of protease inhibitor phenotypes to obstructive lung diseases in a community. N Engl J Med 296:1190–1194PubMedCrossRefGoogle Scholar
  66. 66.
    Niederman MS, Fritts LL, Merrill WW, Fick RB, Matthay RA, Reynolds HY, Gee JBL (1984) Demonstration of a free elastolytic metalloenzyme in human lung lavage fluid and its relationship to alpha1antiprotease. Am Rev Respir Dis 129:943–947PubMedGoogle Scholar
  67. 67.
    O’Dell BL, Kilburn KH, McKenzie WN, Thurston RJ (1978) The lung of the copper-deficient rat. Am J Pathol 91:413–432PubMedGoogle Scholar
  68. 68.
    Orell SR, Mazodier P (1972) Pathological findings in alpha1antitrypsin deficiency. In: Mittman C (ed) Pulmonary emphysema and proteolysis. Academic Press, New York, pp 69–89Google Scholar
  69. 69.
    Pelham F, Wewers M, Crystal R, Janoff A (1984) Urinary demosine excretions is normal in patients with homozygous alpha-1-antitrypsin deficiency. Am Rev Respir Dis 129 (no 4 part 2):A307Google Scholar
  70. 70.
    Phung ND, Harbeck RJ, Muntges CH (1983) Familial hypogammaglobulinaemia. Genetic linkage with α1antitrypsin deficiency. Arch Intern Med 143:575–577PubMedCrossRefGoogle Scholar
  71. 71.
    Riley DJ, Kerr JS (1985) Oxidant injury of the extracellular matrix: potential role in the pathogenesis of pulmonary emphysema. Lung 163:1–13PubMedCrossRefGoogle Scholar
  72. 72.
    Rodriguez JR, Seals JE, Radin A, Lin JS, Mandl I, Turino GM (1979) Neutrophil lysozomal elastase activity in normal subjects and patients with chronic obstructive pulmonary disease. Am Rev Respir Dis 119:409–417PubMedGoogle Scholar
  73. 73.
    Sahebjami H, Wirman JA (1981) Emphysema-like changes in the lungs of starved rats. Am Rev Respir Dis 124:619–624PubMedGoogle Scholar
  74. 74.
    Senior RM, Griffin GL, Mecham RP (1980) Chemotactic activity of elastin-derived peptides. J Clin Invest 66:859–862PubMedCrossRefGoogle Scholar
  75. 75.
    Senior RM, Tegner H, Kuhn C, Ohlsson K, Starcher BC, Pierce JA (1977) The induction of pulmonary emphysema with human leukocyte elastase. Am Rev Respir Dis 116:469–475PubMedGoogle Scholar
  76. 76.
    Shasby DM (1985) Antioxidant activity of some antiproteases. Am Rev Respir Dis 131:293–294PubMedGoogle Scholar
  77. 77.
    Smith BS, Williamson N, McConkey B (1967) Dermal connective tissue in patients with chronic obstructive airways disease. Lancet 1:341–343PubMedCrossRefGoogle Scholar
  78. 78.
    Snider GL, Hayes JA, Franzblau C, Kagam HM, Stone PJ, Korthy AL (1973) Relationship between elastolytic activity and experimental emphysema inducing properties of papain preparations. Am Rev Respir Dis 110:254–262Google Scholar
  79. 79.
    Soskel NT, Watanabe S, Hammond E, Sandberg LB, Renzetti AD, Crapo JD (1982) A copper deficient, zinc supplemented diet produces emphysema in pigs. Am Rev Respir Dis 126:316–325PubMedGoogle Scholar
  80. 80.
    Sproule BJ, Cox DW, Hsu K, Salkie ML, Herbert FA (1983) Pulmonary function associated with the M malton deficient variant of alpha1-antitrypsin. Am Rev Respir Dis 127:237–240PubMedGoogle Scholar
  81. 81.
    Stockley RA (1983) Proteolytic enzymes, their inhibitors and lung diseases. Clin Sci 64:119–126PubMedGoogle Scholar
  82. 82.
    Stockley RA (1984) Measurement of soluble proteins in lung secretions. Thorax 39:241–247PubMedCrossRefGoogle Scholar
  83. 83.
    Stockley RA, Afford SC (1984) The effect of leucocyte elastase on the immunoelectrophoretic behaviour of α1 antitrypsin. Clin Sci 66, 217–224PubMedGoogle Scholar
  84. 84.
    Stockley RA, Afford SC (1984) Qualitative studies of lung lavage α1proteinase inhibitor. Hoppe Seylers Z Physiol Chem 365:503–510PubMedGoogle Scholar
  85. 85.
    Stockley RA, Burnett D (1979) Alpha1antitrypsin and leukocyte elastase in infected and non infected sputum. Am Rev Respir Dis 120:1081–1086PubMedGoogle Scholar
  86. 86.
    Stockley RA, Hill SL, Morrison HM, Starkie CM (1984) Elastolytic activity of sputum and its relation to purulence and to lung function in patients with bronchiectasis. Thorax 39:408–413PubMedCrossRefGoogle Scholar
  87. 87.
    Stockley RA, Mistry M, Bradwell AR, Burnett D (1979) A study of plasma proteins in the sol phase of sputum from patients with chronic bronchitis. Thorax 34:777–782PubMedCrossRefGoogle Scholar
  88. 88.
    Stockley RA, Morrison HM, Smith S, Tetley T (1984) Low molecular mass bronchial proteinase inhibitor and α1-proteinase inhibitor in sputum and bronchoalveolar lavage. Hoppe Seylers Z Physiol Chem 365:587–595PubMedGoogle Scholar
  89. 89.
    Stone PJ, Calore JD, McGowan SE, Bernardo J, Snider GL, Franzblau C (1983) Functional alpha1-proteinase inhibitor in the lower respiratory tract of cigarette smokers is not decreased. Science 221:1187–1189PubMedCrossRefGoogle Scholar
  90. 90.
    Sveger T (1984) Prospective study of children with α1antitrypsin deficiency: eight-year-old follow up. J Paediatr 104:91–94CrossRefGoogle Scholar
  91. 91.
    Talamo RC (1975) Basic and clinical aspects of alpha1-antitrypsin deficiency. Paediatrics 56:91–99Google Scholar
  92. 92.
    Talamo RC, Langley CE, Reed CE, Makino S (1973) α1-antitrypsin deficiency: a variant with no detectable α1antitrypsin. Science 181:70–71PubMedCrossRefGoogle Scholar
  93. 93.
    Thurlbeck WM, Ryder RC, Sternby N (1974) A comparative study of the severity of emphysema in necropsy populations in three different countries. Am Rev Respir Dis 109:239–248PubMedGoogle Scholar
  94. 94.
    Travis J, Beatty K, Matheson N (1984) Oxidation of alpha-1-proteinase inhibitor: significance for pathobiology. In: Hori W H, Heidland A (eds) Proteases: potential role in health and disease. Plenum, New York, pp 89–95Google Scholar
  95. 95.
    Travis J, Beatty K, Wong PS, Matheson NR (1980) Oxidation of alpha1proteinase inhibitor as a major contributing factor in the development of pulmonary emphysema. Bull Eur Physiopathol Respir 16 (suppl) 341–351PubMedGoogle Scholar
  96. 96.
    Triger DR, Millward-Sadler GH, Czaykowski AA, Trowell J, Wright R (1976) Alpha-1-antitrypsin deficiency and liver disease in adults. Q J Med 178:351–372Google Scholar
  97. 97.
    Ward PA, Talamo RC (1973) Deficiency of the chemotactic factor inactivators in human serum with alpha-1-antitrypsin deficiency. J Clin Invest 52:512–519CrossRefGoogle Scholar
  98. 98.
    Weiss SJ, Regiani S (1984) Neutrophils degrade subendothelial matrices in the presence of alpha-1-proteinase inhibitor. Cooperative use of lysosomal proteinases and oxygen metabolites. J Clin Invest 73:1297–1303PubMedCrossRefGoogle Scholar
  99. 99.
    Welgus HG, Campbell EJ, Bar-Shavit Z, Senior RM, Teitelbaum SL (1985) Human alveolar macrophages produce a fibroblast-like collagenase and collagenase inhibitor. J Clin Invest 76:219–224PubMedCrossRefGoogle Scholar
  100. 100.
    Wyss A, Virca GD, Schnebli HP (1984) Cigarette smoke components are not very effective in directly inactivating α1-proteinase inhibitor. Hoppe Seylers Z Physiol Chem 365:511–516PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • R. A. Stockley
    • 1
  1. 1.Lung Immunobiochemical Research Laboratory, Clinical Teaching BlockThe General HospitalBirminghamUnited Kingdom

Personalised recommendations