Discrete & Computational Geometry

, Volume 16, Issue 4, pp 361–368 | Cite as

Optimal output-sensitive convex hull algorithms in two and three dimensions

  • T. M. Chan


We present simple output-sensitive algorithms that construct the convex hull of a set ofn points in two or three dimensions in worst-case optimalO (n logh) time andO (n) space, whereh denotes the number of vertices of the convex hull.


Convex Hull Discrete Comput Geom Computational Geometry Convex Polygon Lower Envelope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    T. M. Chan. Output-sensitive results on convex hulls, extreme points, and related problems.Discrete Comput. Geom., this issue, pp. 369–387.Google Scholar
  2. 2.
    T. M. Chan, J. Snoeyink, and C.-K. Yap. Output-sensitive construction of polytopes in four dimensions and clipped Voronoi diagrams in three.Proc. 6th ACM-SIAM Symp. on Discrete Algorithms, pp. 282–291, 1995.Google Scholar
  3. 3.
    D. R. Chand and S. S. Kapur. An algorithm for convex polytopes.J. Assoc. Comput. Mach., 17:78–86, 1970.zbMATHMathSciNetGoogle Scholar
  4. 4.
    B. Chazelle. An optimal algorithm for intersecting three-dimensional convex polyhedra.SIAM J. Comput., 21:671–696, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    B. Chazelle and D. P. Dobkin. Intersection of convex objects in two and three dimensions.J. Assoc. Comput. Mach., 34:1–27, 1987.MathSciNetGoogle Scholar
  6. 6.
    B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, J. Hershberger, M. Sharir, and J. Snoeyink. Ray shooting in polygons using geodesic triangulations.Proc. 18th Internat. Colloq. on Automata, Languages, and Programming, pp. 661–673, Lecture Notes in Computer Science, vol. 510. Springer-Verlag, Berlin, 1991.Google Scholar
  7. 7.
    B. Chazelle and J. Matoušek. Derandomizing an output-sensitive convex hull algorithm in three dimensions.Comput. Geom. Theory Appl., 5:27–32, 1995.zbMATHGoogle Scholar
  8. 8.
    K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry, II.Discrete Comput. Geom., 4:387–421, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    D. P. Dobkin and D. G. Kirkpatrick. Fast detection of polyhedral intersection.Theoret. Comput. Sci., 27:241–253, 1983.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    D. P. Dobkin and D. G. Kirkpatrick. Determining the separation of preprocessed polyhedra: a unified approach.Proc. 17th Internat. Colloq. on Automata, Languages, and Programming, pp. 440–413, Lecture Notes in Computer Science, vol. 443. Springer-Verlag, Berlin, 1990.Google Scholar
  11. 11.
    H. Edelsbrunner.Algorithms in Combinatorial Geometry. Springer-Verlag, Berlin, 1987.zbMATHGoogle Scholar
  12. 12.
    H. Edelsbrunner and E. P. Mücke. Simulation of simplicity: A technique to cope with degenerate cases in geometric algorithms.ACM Trans. Graphics, 9:66–104, 1990.zbMATHCrossRefGoogle Scholar
  13. 13.
    H. Edelsbrunner and W. Shi. AnO (n log2 h) time algorithm for the three-dimensional convex hull problem.SIAM J. Comput., 20:259–277, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    I. Emiris and J. Canny. An efficient approach to removing geometric degeneracies.Proc. 8th ACM Symp. on Computational Geometry, pp. 74–82, 1992.Google Scholar
  15. 15.
    R. L. Graham. An efficient algorithm for determining the convex hull of a finite planar set.Inform. Process. Lett., 1:132–133, 1972.zbMATHCrossRefGoogle Scholar
  16. 16.
    S. Hart and M. Sharir. Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes.Combinatorica, 6:151–177, 1986.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    J. Hershberger. Finding the upper envelope ofn line segments inO (n logn) time.Inform. Process. Lett., 33:169–174, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    J. Hershberger and S. Suri. A pedestrian approach to ray shooting: shoot a ray, take a walk.Proc. 4th ACM-SIAM Symp. on Discrete Algorithms, pp. 54–63, 1993.Google Scholar
  19. 19.
    R. A. Jarvis. On the identification of the convex hull of a finite set of points in the plane.Inform. Process. Lett., 2:18–21, 1973.zbMATHCrossRefGoogle Scholar
  20. 20.
    D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm?SIAM J. Comput., 15: 287–299, 1986.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    K. Mulmuley.Computational Geometry: An Introduction Through Randomized Algorithms. Prentice-Hall, Englewood Cliffs, NJ, 1994.Google Scholar
  22. 22.
    J. O'Rourke, C.-B. Chien, T. Olson, and D. Naddor. A new linear algorithm for intersecting convex polygons.Comput. Graph. Image Process., 19:384–391, 1982.zbMATHCrossRefGoogle Scholar
  23. 23.
    J. O'Rourke,Computational Geometry in C. Cambridge University Press, Cambridge, 1994.zbMATHGoogle Scholar
  24. 24.
    F. P. Preparata and S. J. Hong. Convex hulls of finite sets of points in two and three dimensions.Commun. ACM, 20:87–93, 1977.zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    F. P. Preparata and M. I. Shamos.Computational Geometry: An Introduction. Springer-Verlag, New York, 1985.Google Scholar
  26. 26.
    G. F. Swart. Finding the convex hull facet by facet.J. Algorithms, 6:17–48, 1985.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1996

Authors and Affiliations

  • T. M. Chan
    • 1
  1. 1.Department of Computer ScienceUniversity of British ColumbiaVancouverCanada

Personalised recommendations