Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Optimal output-sensitive convex hull algorithms in two and three dimensions


We present simple output-sensitive algorithms that construct the convex hull of a set ofn points in two or three dimensions in worst-case optimalO (n logh) time andO (n) space, whereh denotes the number of vertices of the convex hull.


  1. 1.

    T. M. Chan. Output-sensitive results on convex hulls, extreme points, and related problems.Discrete Comput. Geom., this issue, pp. 369–387.

  2. 2.

    T. M. Chan, J. Snoeyink, and C.-K. Yap. Output-sensitive construction of polytopes in four dimensions and clipped Voronoi diagrams in three.Proc. 6th ACM-SIAM Symp. on Discrete Algorithms, pp. 282–291, 1995.

  3. 3.

    D. R. Chand and S. S. Kapur. An algorithm for convex polytopes.J. Assoc. Comput. Mach., 17:78–86, 1970.

  4. 4.

    B. Chazelle. An optimal algorithm for intersecting three-dimensional convex polyhedra.SIAM J. Comput., 21:671–696, 1992.

  5. 5.

    B. Chazelle and D. P. Dobkin. Intersection of convex objects in two and three dimensions.J. Assoc. Comput. Mach., 34:1–27, 1987.

  6. 6.

    B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, J. Hershberger, M. Sharir, and J. Snoeyink. Ray shooting in polygons using geodesic triangulations.Proc. 18th Internat. Colloq. on Automata, Languages, and Programming, pp. 661–673, Lecture Notes in Computer Science, vol. 510. Springer-Verlag, Berlin, 1991.

  7. 7.

    B. Chazelle and J. Matoušek. Derandomizing an output-sensitive convex hull algorithm in three dimensions.Comput. Geom. Theory Appl., 5:27–32, 1995.

  8. 8.

    K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry, II.Discrete Comput. Geom., 4:387–421, 1989.

  9. 9.

    D. P. Dobkin and D. G. Kirkpatrick. Fast detection of polyhedral intersection.Theoret. Comput. Sci., 27:241–253, 1983.

  10. 10.

    D. P. Dobkin and D. G. Kirkpatrick. Determining the separation of preprocessed polyhedra: a unified approach.Proc. 17th Internat. Colloq. on Automata, Languages, and Programming, pp. 440–413, Lecture Notes in Computer Science, vol. 443. Springer-Verlag, Berlin, 1990.

  11. 11.

    H. Edelsbrunner.Algorithms in Combinatorial Geometry. Springer-Verlag, Berlin, 1987.

  12. 12.

    H. Edelsbrunner and E. P. Mücke. Simulation of simplicity: A technique to cope with degenerate cases in geometric algorithms.ACM Trans. Graphics, 9:66–104, 1990.

  13. 13.

    H. Edelsbrunner and W. Shi. AnO (n log2 h) time algorithm for the three-dimensional convex hull problem.SIAM J. Comput., 20:259–277, 1991.

  14. 14.

    I. Emiris and J. Canny. An efficient approach to removing geometric degeneracies.Proc. 8th ACM Symp. on Computational Geometry, pp. 74–82, 1992.

  15. 15.

    R. L. Graham. An efficient algorithm for determining the convex hull of a finite planar set.Inform. Process. Lett., 1:132–133, 1972.

  16. 16.

    S. Hart and M. Sharir. Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes.Combinatorica, 6:151–177, 1986.

  17. 17.

    J. Hershberger. Finding the upper envelope ofn line segments inO (n logn) time.Inform. Process. Lett., 33:169–174, 1989.

  18. 18.

    J. Hershberger and S. Suri. A pedestrian approach to ray shooting: shoot a ray, take a walk.Proc. 4th ACM-SIAM Symp. on Discrete Algorithms, pp. 54–63, 1993.

  19. 19.

    R. A. Jarvis. On the identification of the convex hull of a finite set of points in the plane.Inform. Process. Lett., 2:18–21, 1973.

  20. 20.

    D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm?SIAM J. Comput., 15: 287–299, 1986.

  21. 21.

    K. Mulmuley.Computational Geometry: An Introduction Through Randomized Algorithms. Prentice-Hall, Englewood Cliffs, NJ, 1994.

  22. 22.

    J. O'Rourke, C.-B. Chien, T. Olson, and D. Naddor. A new linear algorithm for intersecting convex polygons.Comput. Graph. Image Process., 19:384–391, 1982.

  23. 23.

    J. O'Rourke,Computational Geometry in C. Cambridge University Press, Cambridge, 1994.

  24. 24.

    F. P. Preparata and S. J. Hong. Convex hulls of finite sets of points in two and three dimensions.Commun. ACM, 20:87–93, 1977.

  25. 25.

    F. P. Preparata and M. I. Shamos.Computational Geometry: An Introduction. Springer-Verlag, New York, 1985.

  26. 26.

    G. F. Swart. Finding the convex hull facet by facet.J. Algorithms, 6:17–48, 1985.

Download references

Author information

Additional information

This research was supported by a Killam Predoctoral Fellowship and an NSERC Postgraduate Scholarship.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chan, T.M. Optimal output-sensitive convex hull algorithms in two and three dimensions. Discrete Comput Geom 16, 361–368 (1996). https://doi.org/10.1007/BF02712873

Download citation


  • Convex Hull
  • Discrete Comput Geom
  • Computational Geometry
  • Convex Polygon
  • Lower Envelope