JOM

, Volume 54, Issue 8, pp 34–38 | Cite as

Microstructure and creep behavior in AE42 magnesium die-casting alloy

  • Bob R. Powell
  • Vadim Rezhets
  • Michael P. Balogh
  • Richard A. Waldo
Research Summary Magnesium

Abstract

The micro structural analysis of die-cast AE42 reveals a correlation between micro structure and creep strength. A lamellar-phase Al11RE3, which dominates the interdendritic microstructure of the alloy, partly decomposes above 150‡C into Al2RE and Al (forming Mg17Al12). The increased solubility of aluminum in magnesium at higher temperatures may also promote the decomposition of Al11RE3. The creep strength decreases sharply with these phase changes. A mechanism for the decrease in creep strength of AE42 is proposed whereby the reduced presence of lamellar Al111RE3 and/or the presence of Mg17Al12 contribute to the observed poor creep strength at higher temperatures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Hollrigl-Rosta et al., “Magnesium in Volkswagen,”Light Metal Age,8(1980), pp. 22–29.Google Scholar
  2. 2.
    K.E. Nelson, “Magnesium Die Casting Alloys” (Paper presented at the 6th SDCE International Die Casting Congress, Cleveland, Ohio, 1970), paper no. 13.Google Scholar
  3. 3.
    W.E. Mercer, “Magnesium Die Cast Alloys for Elevated Temperature Applications,” SAE Technical Publication No. 900788 (Warrendale, PA: SAE, 1990).Google Scholar
  4. 4.
    E.G. Sieracki, J.J. Velazquez, and K. Kabiri, “Compressive Stress Retention Characteristics of High Pressure Die Cast Magnesium Alloys,” SAE Technical Publication No. 960421 (Warrendale, PA:TMS, 1996).Google Scholar
  5. 5.
    William E. Mercer, private communication with author, Dow Chemical Company (15 March 1998).Google Scholar
  6. 6.
    L.Y. Wei and G.L. Dunlop: “Precipitation Hardening in a Cast Mg-Rare Earth Alloy,”Magnesium Alloys and Their Applications, ed. B.L. Mordike and F. Hehmann (Verlag, Germany: DGM Informationsgesellschaft, 1992), pp. 335–342.Google Scholar
  7. 7.
    A.H. Gomes de Mesquita and K.H.J. Buschow, “The Crystal Structure of So-Called alpha-LaAl4,”Acta Cryst., 22 (1967), pp. 497–501.CrossRefGoogle Scholar
  8. 8.
    J.L. Murray,Phase Diagrams of Binary Magnesium Alloys (Metal Park, OH: ASM International, 1988), pp. 17–34.Google Scholar
  9. 9.
    H.M. Rietveld, “Line Profiles of Neutron Powder-Diffraction Peaks for Structure Refinement”,Acta Cryst., 22 (1967), pp. 151–152.CrossRefGoogle Scholar
  10. 10.
    A.A. Luo and M.O. Pekguleryuz, “Cast Magnesium Alloys for Elevated Temperature Applications”,J. Mat. Sci., 29 (1994), pp. 5259–5271.CrossRefGoogle Scholar
  11. 11 .
    L.Y. Wei and G.L. Dunlop, “The Solidification Behavior of Mg-Al-Rare Earth Alloys”,J. Alloys and Compounds, 232 (1996), pp. 264–268.CrossRefGoogle Scholar
  12. 12.
    E.F. Emley,Principles of Magnesium Technology (Oxford, England: Pergamon Press, 1966), p. 267.Google Scholar
  13. 13.
    G. Foerster, “Designing Die Casting Alloys” (Paper presented at the 7th SDCE International Die Casting Congress, 1972), No. 9372.Google Scholar
  14. 14.
    D.J. Sakkinen, “Physical Metallurgy of Magnesium Die Castings”, SAE Technical Publication No. 940779 (Warrendale, PA: SAE, 1994).Google Scholar
  15. 15.
    T.K. Aune, H.Westengen, and T. Ruden, “The Effects of Varying Aluminum and Rare Earth Content on the Mechanical Properties of Die Cast Magnesium Alloys”, SAETechnical Publication No.940777 (Warrendale, PA: SAE, 1994).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2002

Authors and Affiliations

  • Bob R. Powell
    • 1
  • Vadim Rezhets
    • 1
  • Michael P. Balogh
    • 1
  • Richard A. Waldo
    • 1
  1. 1.General Motors Research & Development CenterWarren

Personalised recommendations