Discrete & Computational Geometry

, Volume 15, Issue 4, pp 429–441 | Cite as

McLaren’s improved snub cube and other new spherical designs in three dimensions

  • R. H. Hardin
  • N. J. A. Sloane
Article

Abstract

Evidence is presented to suggest that, in three dimensions, spherical 6-designs withN points exist forN=24, 26,≥28; 7-designs forN=24, 30, 32, 34,≥36; 8-designs forN=36, 40, 42,≥44; 9-designs forN=48, 50, 52,≥54; 10-designs forN=60, 62, ≥64; 11-designs forN=70, 72,≥74; and 12-designs forN=84,≥86. The existence of some of these designs is established analytically, while others are given by very accurate numerical coordinates. The 24-point 7-design was first found by McLaren in 1963, and—although not identified as such by McLaren—consists of the vertices of an “improved” snub cube, obtained from Archimedes' regular snub cube (which is only a 3-design) by slightly shrinking each square face and expanding each triangular face. 5-designs with 23 and 25 points are presented which, taken together with earlier work of Reznick, show that 5 designs exist forN=12, 16, 18, 20,≥22. It is conjectured, albeit with decreasing confidence fort≥9, that these lists oft-designs are complete and that no other exist. One of the constructions gives a sequence of putative sphericalt-designs withN=12m points (m≥2) whereN=1/2t2(1+o(1)) ast→∞.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Bajnok, Construction of designs on the 2-sphere,European J. Combin.,12 (1991), 377–382.MATHMathSciNetGoogle Scholar
  2. 2.
    B. Bajnok, Paper presented at American Mathematical Society meeting, College Station, TX, Oct. 22, 1993 (seeAbstracts Amer. Math. Soc.,14 (1993), #886-05-35).Google Scholar
  3. 3.
    E. Bannai and R. M. Damerell, Tight spherical designs, I,J. Math. Soc. Japan,31 (1979), 199–207.MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    E. Bannai and R. M. Damerell, Tight spherical designs, II,J. London Math. Soc.,21 (1980), 13–30.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan, and S. M. Watt,Maple V Reference Manual, Springer-Verlag, New York, 1991.Google Scholar
  6. 6.
    J. H. Conway and N. J. A. Sloane,Sphere Packing, Lattices and Groups, 2nd edn., Springer-Verlag, New York, 1993.Google Scholar
  7. 7.
    H. S. M. Coxeter,Regular Polytopes, 3rd edn., Dover, New York, 1973.Google Scholar
  8. 8.
    H. S. M. Coxeter and W. O. J. Moser,Generators and Relations for Discrete Groups, 4th edn., Springer-Verlag, New York, 1984.Google Scholar
  9. 9.
    H. M. Cundy and A. P. Rollett,Mathematical Models, 2nd edn., Oxford University Press, Oxford 1961.MATHGoogle Scholar
  10. 10.
    P. Delsarte, J.-M. Goethals, and J. J. Seidel, Spherical codes and designs,Geom. Dedicata,6 (1977), 363–388.MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    W. Gautschi, Advances in Chebyshev quadrature, inNumerical Analysis (Proc. 6th Biennial Dundee Conf., Univ. Dundee, Dundee, 1975), Lecture Notes in Mathematics, Vol. 506, Springer-Verlag, Berlin, 1976, pp. 100–121.Google Scholar
  12. 12.
    J.-M. Goethals and J. J. Seidel, Spherical designs, in D. K. Ray-Chaudhuri, ed.,Relations Between Combinatorics and Other Parts of Mathematics Proceedings of Symposia in Pure Mathematics, Vol. 34, Academic Mathematical Society, Providence, RI, 1979, pp. 255–272.Google Scholar
  13. 13.
    J.-M. Goethals and J. J. Seidel, Cubature formulae, polytopes and spherical designs, in C. Daviset al., eds.,The Geometric Vein: The Coxeter Festschrift Springer-Verlag, New York, 1981, pp. 203–218.Google Scholar
  14. 14.
    J.-M. Goethals and J. J. Seidel, The football,Nieux Arch. Wisk..29 (1981), 50–58.MATHMathSciNetGoogle Scholar
  15. 15.
    R. H. Hardin and N. J. A. Sloane,Operating Manual for Gosset: A General-Purpose Program for Constructing Experimental Designs, 2nd edn., Statistics Research Report No. 106, Bell Laboratories, Murray Hill, NJ, Oct. 1992.Google Scholar
  16. 16.
    R. H. Hardin and N. J. A. Sloane, New spherical 4-designs.Discrete Math. 106/107 (1992), 255–264.CrossRefMathSciNetGoogle Scholar
  17. 17.
    R. H. Hardin and N. J. A. Sloane, A new approach to the construction of optimal designs.J. Statist. Plann. Inference,37 (1993), 339–369.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    R. H. Hardin, N. J. A. Sloane, and W. D. Smith,Spherical Codes, in preparation.Google Scholar
  19. 19.
    R. Hooke and T. A. Jeeves, “Direct search” solution of numerical and statistical problems.J. Assoc. Comput. Mach.,8 (1961), 212–229.MATHGoogle Scholar
  20. 20.
    R. B. Kearfott and M. Novoa III, Algorithm 681: INTBIS, a portable interval Newton/bisection package,ACM Trans. Math. Software,16 (1990), 152–157.MATHCrossRefGoogle Scholar
  21. 21.
    J. Korevaar and J. L. H. Meyers, Spherical Faraday cage for the case of equal point changes and Chebyshevtype quadrature.J. Integral Transforms Special Funct.,1 (1993), 105–127.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    A. D. McLaren, Optimal numerical integration on a sphere,Math. Comp.,17 (1963), 361–383.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Y. Mimura, A construction of spherical 2-designs,Graphs Combin.,6 (1990), 369–372.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    B. Reznick,Sums of Even Powers of Real Linear Forms, Memoirs of the American Mathematical Society, No. 463, American Mathematical Society, Providence, RI, 1992.Google Scholar
  25. 25.
    B. Reznick, Some constructions of spherical 5-designs,Linear Algebra Appl., 1995, to appear.Google Scholar
  26. 26.
    A. H. Stroud,Approximate Calculation of Multiple Integrals, Prentice-Hall, Englewood Cliffs, NJ, 1971.MATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1996

Authors and Affiliations

  • R. H. Hardin
    • 1
  • N. J. A. Sloane
    • 1
  1. 1.AT&T Bell LaboratoriesMathematical Sciences Research CenterMurray HillUSA

Personalised recommendations