# McLaren’s improved snub cube and other new spherical designs in three dimensions

- 463 Downloads
- 127 Citations

## Abstract

Evidence is presented to suggest that, in three dimensions, spherical 6-designs with*N* points exist for*N*=24, 26,≥28; 7-designs for*N*=24, 30, 32, 34,≥36; 8-designs for*N*=36, 40, 42,≥44; 9-designs for*N*=48, 50, 52,≥54; 10-designs for*N*=60, 62, ≥64; 11-designs for*N*=70, 72,≥74; and 12-designs for*N*=84,≥86. The existence of some of these designs is established analytically, while others are given by very accurate numerical coordinates. The 24-point 7-design was first found by McLaren in 1963, and—although not identified as such by McLaren—consists of the vertices of an “improved” snub cube, obtained from Archimedes' regular snub cube (which is only a 3-design) by slightly shrinking each square face and expanding each triangular face. 5-designs with 23 and 25 points are presented which, taken together with earlier work of Reznick, show that 5 designs exist for*N*=12, 16, 18, 20,≥22. It is conjectured, albeit with decreasing confidence for*t*≥9, that these lists of*t*-designs are complete and that no other exist. One of the constructions gives a sequence of putative spherical*t*-designs with*N*=12*m* points (*m*≥2) where*N*=1/2*t* ^{2}(1+*o*(1)) as*t*→∞.

## Keywords

Discrete Comput Geom Interval Method Triangular Face Soccer Ball Spherical Code## References

- 1.B. Bajnok, Construction of designs on the 2-sphere,
*European J. Combin.*,**12**(1991), 377–382.zbMATHMathSciNetGoogle Scholar - 2.B. Bajnok, Paper presented at American Mathematical Society meeting, College Station, TX, Oct. 22, 1993 (see
*Abstracts Amer. Math. Soc.*,**14**(1993), #886-05-35).Google Scholar - 3.E. Bannai and R. M. Damerell, Tight spherical designs, I,
*J. Math. Soc. Japan*,**31**(1979), 199–207.zbMATHMathSciNetCrossRefGoogle Scholar - 4.E. Bannai and R. M. Damerell, Tight spherical designs, II,
*J. London Math. Soc.*,**21**(1980), 13–30.zbMATHCrossRefMathSciNetGoogle Scholar - 5.B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan, and S. M. Watt,
*Maple V Reference Manual*, Springer-Verlag, New York, 1991.Google Scholar - 6.J. H. Conway and N. J. A. Sloane,
*Sphere Packing, Lattices and Groups*, 2nd edn., Springer-Verlag, New York, 1993.Google Scholar - 7.H. S. M. Coxeter,
*Regular Polytopes*, 3rd edn., Dover, New York, 1973.Google Scholar - 8.H. S. M. Coxeter and W. O. J. Moser,
*Generators and Relations for Discrete Groups*, 4th edn., Springer-Verlag, New York, 1984.Google Scholar - 9.H. M. Cundy and A. P. Rollett,
*Mathematical Models*, 2nd edn., Oxford University Press, Oxford 1961.zbMATHGoogle Scholar - 10.P. Delsarte, J.-M. Goethals, and J. J. Seidel, Spherical codes and designs,
*Geom. Dedicata*,**6**(1977), 363–388.zbMATHMathSciNetCrossRefGoogle Scholar - 11.W. Gautschi, Advances in Chebyshev quadrature, in
*Numerical Analysis (Proc. 6th Biennial Dundee Conf.*, Univ. Dundee, Dundee, 1975), Lecture Notes in Mathematics, Vol. 506, Springer-Verlag, Berlin, 1976, pp. 100–121.Google Scholar - 12.J.-M. Goethals and J. J. Seidel, Spherical designs, in D. K. Ray-Chaudhuri, ed.,
*Relations Between Combinatorics and Other Parts of Mathematics*Proceedings of Symposia in Pure Mathematics, Vol. 34, Academic Mathematical Society, Providence, RI, 1979, pp. 255–272.Google Scholar - 13.J.-M. Goethals and J. J. Seidel, Cubature formulae, polytopes and spherical designs, in C. Davis
*et al.*, eds.,*The Geometric Vein: The Coxeter Festschrift*Springer-Verlag, New York, 1981, pp. 203–218.Google Scholar - 14.J.-M. Goethals and J. J. Seidel, The football,
*Nieux Arch. Wisk.*.**29**(1981), 50–58.zbMATHMathSciNetGoogle Scholar - 15.R. H. Hardin and N. J. A. Sloane,
*Operating Manual for Gosset: A General-Purpose Program for Constructing Experimental Designs*, 2nd edn., Statistics Research Report No. 106, Bell Laboratories, Murray Hill, NJ, Oct. 1992.Google Scholar - 16.R. H. Hardin and N. J. A. Sloane, New spherical 4-designs.
*Discrete Math.***106/107**(1992), 255–264.CrossRefMathSciNetGoogle Scholar - 17.R. H. Hardin and N. J. A. Sloane, A new approach to the construction of optimal designs.
*J. Statist. Plann. Inference*,**37**(1993), 339–369.zbMATHCrossRefMathSciNetGoogle Scholar - 18.R. H. Hardin, N. J. A. Sloane, and W. D. Smith,
*Spherical Codes*, in preparation.Google Scholar - 19.R. Hooke and T. A. Jeeves, “Direct search” solution of numerical and statistical problems.
*J. Assoc. Comput. Mach.*,**8**(1961), 212–229.zbMATHGoogle Scholar - 20.R. B. Kearfott and M. Novoa III, Algorithm 681: INTBIS, a portable interval Newton/bisection package,
*ACM Trans. Math. Software*,**16**(1990), 152–157.zbMATHCrossRefGoogle Scholar - 21.J. Korevaar and J. L. H. Meyers, Spherical Faraday cage for the case of equal point changes and Chebyshevtype quadrature.
*J. Integral Transforms Special Funct.*,**1**(1993), 105–127.zbMATHCrossRefMathSciNetGoogle Scholar - 22.A. D. McLaren, Optimal numerical integration on a sphere,
*Math. Comp.*,**17**(1963), 361–383.zbMATHCrossRefMathSciNetGoogle Scholar - 23.Y. Mimura, A construction of spherical 2-designs,
*Graphs Combin.*,**6**(1990), 369–372.zbMATHCrossRefMathSciNetGoogle Scholar - 24.B. Reznick,
*Sums of Even Powers of Real Linear Forms*, Memoirs of the American Mathematical Society, No. 463, American Mathematical Society, Providence, RI, 1992.Google Scholar - 25.B. Reznick, Some constructions of spherical 5-designs,
*Linear Algebra Appl.*, 1995, to appear.Google Scholar - 26.A. H. Stroud,
*Approximate Calculation of Multiple Integrals*, Prentice-Hall, Englewood Cliffs, NJ, 1971.zbMATHGoogle Scholar