Discrete & Computational Geometry

, Volume 16, Issue 3, pp 259–275

On thecd-variation polynomials of André and simsun permutations

  • G. Hetyei
Article

Abstract

We prove a conjecture of Stanley on thecd-index of the semisuspension of the face poset of a simplicial shelling component. We give a new signed generalization of André permutations, together with a new notion ofcd-variation for signed permutations. This generalization not only allows us to compute thecd-index of the face poset of a cube, but also occurs as a natural set of orbit representatives for a signed generalization of the Foata-Strehl commutative group action on the symmetric group. From the induction techniques used, it becomes clear that there is more than one way to define classes of permutations andcd-variation such that they allow us to compute thecd-index of the same poset.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. M. Bayer and L. J. Billera, Generalized Dehn-Sommerville relations for polytopes, spheres and Eulerian partially ordered sets.Invent. Math. 79 (1985), 143–157.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    M. M. Bayer and A. Klapper, A new index for polytopes,Discrete Comput. Geom. 6 (1991), 33–47.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    A. Björner, Shellable and Cohen-Macaulay partially ordered sets.Trans. Amer. Math. Soc. 260 (1980), 159–183.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    R. Ehrenborg and M. Readdy, Ther-cubical lattice and a generalization of thecd-index,European J. Combin., to appear.Google Scholar
  5. 5.
    D. Foata and M. P. Schützenberger, Nombres d'Euler et permutations alternantes, Manuscript, University of Florida, Gainesville, FL, 1971.Google Scholar
  6. 6.
    D. Foata and M. P. Schützenberger, Nombres d'Euler et permutations alternantes. In: J. N. Srivastavaet al., A Survey of Combinatorial Theory, Amsterdam, North-Holland, 1973, pp. 173–187.Google Scholar
  7. 7.
    D. Foata and V. Strehl, Rearrangements of the symmetric group and enumerative properties of the tangent and secant numbers,Math. Z. 137 (1974), 257–264.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    D. Foata and V. Strehl, Euler numbers and variations of permutations. In:Colloquio Internazionale sulle Teorie Combinatorie, 1973, Tome I (Atti Dei Convegni Lincei 17, 119–131), Accademia Nazionale dei Lincei, Rome, 1976.Google Scholar
  9. 9.
    N. Metropolis and G.-C. Rota, Combinatorial structure of the faces of then-cube,SIAM J. Appl. Math. 35(4) (1978), 689–694.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    M. Purtill, André permutations, lexicographic shellability, and thecd-index of a convex polytope,Trans. Amer. Math. Soc. 338(1) (1993), 77–104.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    R. P. Stanley, Flagf-vectors and thecd-index,Math. Z. 216 (1994), 483–499.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    S. Sundaram, The homology representations of the symmetric group on Cohen-Macaulay subposets of the partition lattice,Adv. in Math. 104 (1994), 225–296.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    S. Sundaram, The homology of partitions with an even number of blocks,J. Algebraic Combin. 4(1) (1995), 69–92.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1996

Authors and Affiliations

  • G. Hetyei
    • 1
  1. 1.LACIM, Département de mathématiquesUniversité du Québec à MontréalMontréalCanada
  2. 2.Mathematical Research Institute of the Hungarian Academy of SciencesHungary

Personalised recommendations