Advertisement

Il Nuovo Cimento B (1965-1970)

, Volume 44, Issue 1, pp 1–14 | Cite as

Singular hypersurfaces and thin shells in general relativity

  • W. Israel
Article

Summary

An approach to shock waves, boundary surfaces and thin shells in general relativity is developed in which their histories are characterized in a purely geometrical way by the extrinsic curvatures of their imbeddings in space-time. There is some gain in simplicity and ease of application over previous treatments in that no mention of « admissible » or, indeed, any space-time co-ordinates is needed. The formalism is applied to a study of the dynamics of thin shells of dust.

Keywords

Dust Boundary Surface Thin Shell Extrinsic Curvature Energy Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Riassunto

Si sviluppa un’approssimazione alle onde d’urto, superfici di contorno e strati sottili in relatività generale in cui le loro storie sono caratterizzate in modo puramente geometrico dalle curvature estrinseche delle loro giaciture nello spazio-tempo. Si ha un qualche guadagno in semplicità e facilità di applicazione rispetto alle trattazioni precedenti in quanto non è necessaria alcuna menzione di « ammissibilità » o, nella fattispecie di alcuna coordinata spazio-temporale. Si applica questo formalismo allo studio della dinamica degli strati sottili di polveri.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    J. R. Oppenheimer andH. Snyder:Phys. Rev.,56, 455 (1939);F. Hoyle andJ. V. Narlikar:Proc. Roy. Soc., A278, 465 (1964);C. W. Misner andD.H. Sharp:Phys. Rev.,136, B 571 (1964);G. C. McVittie:Astrophys. Journ.,140, 409 (1964);H. Nariai andK. Tomita:Progr. Theor. Phys.,34, 155 (1965).ADSCrossRefGoogle Scholar
  2. (2).
    C. Lanczos:Phys. Zeits.,23, 539 (1922);Ann. der Phys.,74, 518 (1924). See alsoN. Sen:Ann. der Phys.,73, 365 (1924).Google Scholar
  3. (3).
    Boundary surfaces:A. H. Taub:Ill. Journ. Math.,1, 370 (1957);N. Coburn:Journ. Math. and Mech.,10, 361 (1961);R. Abraham:Journ. Math. and Mech.,11, 553 (1962);D. G. B. Edelen andT. Y. Thomas:Journ. Math. Anal. Appl.,7, 247 (1963);G. Dautcourt:Arch. Rat. Mech. and Anal.,13, 55 (1963);H. Nariai:Progr. Theor. Phys.,34, 173 (1965). Surface layers:G. Dautcourt:Math. Nachr.,27, 277 (1964). This reference also treatsnull surface layers (e.g. shells of photons), an important topic which lies outside the scope of the present work.MathSciNetGoogle Scholar
  4. (4).
    A. Lichnerowicz:Théories Relativistes de la Gravitation et de l’Electromagnétisme (Paris, 1955). Also:J. L. Synge:Relativity: The General Theory (Amsterdam, 1960), p. 39;W. Israel:Proc. Roy. Soc., A248, 404 (1958).Google Scholar
  5. (5).
    S. O’Brien andJ. L. Synge:Commun. Dublin Inst. Adv. Stud., A, No. 9 (1952). See alsoLanczos, ref. (2).Google Scholar
  6. (6).
    Cf.R. K. Sachs: inRelativity, Groups, Topology, edited byde Witt andde Witt (New York, 1964), p. 534.Google Scholar
  7. (7).
    H. P. Robertson:Proc. Edinburgh Math. Soc.,5, 63 (1937);L. Infeld andA. Schild:Rev. Mod. Phys.,21, 408 (1949);A. H. Taub:Journ. Math. Phys.,5, 112 (1964).CrossRefGoogle Scholar
  8. (8).
    H. Weyl:Raum, Zeit, Materie, 5th edition, Sect.36 (Berlin, 1923);L. Infeld andJ. Plebanski:Motion and Relativity, Sect.I-6, (New York, 1960);W. B. Bonnor andN. S. Swaminarayan:Zeits. Phys.,177, 240 (1964). For critical comments, seeM. Carmeli:Phys. Lett.,11, 24 (1964).Google Scholar
  9. (9).
    Seee.g. J. L. Synge:Relativity: The General Theory (Amsterdam, 1960), p. 175.Google Scholar
  10. (10).
    Throughout the paper Greek indices take the range 1–4, Latin indices the range 2, 3, 4.Google Scholar
  11. (13).
    See ref. (9), p. 35.Google Scholar
  12. (14).
    See ref. (9), p. 276.Google Scholar
  13. (16).
    W. Israel:Gravitational Collapse of a Spherical Shell and the Problem of Causality, Preprint Series A, No. 45, Mathematics Department, University of Alberta. (October 1965).Google Scholar

Copyright information

© Società Italiana di Fisica 1966

Authors and Affiliations

  • W. Israel
    • 1
  1. 1.Department of MathematicsUniversity of AlbertaEdmonton

Personalised recommendations