Advertisement

Il Nuovo Cimento B (1965-1970)

, Volume 41, Issue 2, pp 101–112 | Cite as

On a glass of non-markovian processes associated with correlated pulse trains and their application to Barkhausen noise

  • S. K. Srinivasan
  • R. Vasudevan
Article

Summary

A model of Barkhausen noise proposed by Mazzetti is analysed using product density techniques and the results relating to power spectrum of the response are derived in a simple manner. More realistic models are investigated by introducing non-Markovian features in the basic process governing the distribution of pulses. Such a model describes correlations exhibiting a memory longer than that of a simple renewal process. General results for the power spectra of the response are explicitly obtained. A few interesting features arising from the dependence of the time interval distribution on the total number of events are pointed out.

Keywords

Shot Noise Product Density Successive Pulse Stochastic Point Process Tlot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Riassunto

Si studia un modello di rumore di Barkhausen proposto da Mazzetti facendo uso delle tecniche di densità di prodotto e si deducono in modo semplice i risultati riferentisi allo spettro di potenza della risposta. Si analizzano modelli più realistici introducendo caratteristiche non markoviane nei processi fondamentali che regolano la distribuzione degli impulsi. Tale modello descrive correlazioni che presentano una memoria più larga di quella di un semplice processo di rinnovamento. Si ottengono esplicitamente risultati generali per gli spettri di potenza della risposta. Si mettono in evidenza alcune interessanti caratteristiche derivanti dalla dipendenza della distribuzione degli intervalli di tempo dal numero degli eventi.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    A. Ramakrishnan :Probability and Stochastic Processes, inHandbuch der Physik, vol. 4 (1956).Google Scholar
  2. (2).
    P. Mazzetti:Nuovo Cimento 25, 1322 (1962);31, 88 (1964).CrossRefGoogle Scholar
  3. (3).
    M. S. Bartlett:An Introduction to Stochastic Processes, Cambridge (1955). p. 20.Google Scholar
  4. (4).
    S. K. Srinivasan:On a Class of non-Markovian Processes, I.I.T. Pre-print (1962).Google Scholar
  5. (5).
    A. Ramakrishnan:Proc. Camb. Phil. Soc. 49, 473 (1963).ADSMathSciNetCrossRefGoogle Scholar
  6. (6).
    A. Ramakrishnan andP. M. Mathews:Phil. Mag. 44, 1122 (1953).MathSciNetCrossRefGoogle Scholar
  7. (*).
    Due to limitations of space, the details of calculations are omitted. A full derivation of the formula may be found in ref. (7).Google Scholar
  8. (7).
    S. K. Srinivasan andR. Vasudevan:On A Class of non-Markovian Processes Associated with Pulse-trains, I.I.T. Report No. 4 (1965).Google Scholar
  9. (8).
    S. K. Srinivasan:Nuovo Cimento,38, 979 (1965).CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1966

Authors and Affiliations

  • S. K. Srinivasan
    • 1
  • R. Vasudevan
    • 2
  1. 1.Department of MathematicsIndian Institute of TechnologyMadras
  2. 2.MATSGIENGE, The Institute of Mathematical SciencesMadras

Personalised recommendations