Advertisement

Il Nuovo Cimento B (1965-1970)

, Volume 66, Issue 2, pp 239–259 | Cite as

The formulation of constitutive equations in continuum relativistic physics

  • G. Lianis
Article

Summary

In this paper we examine the restrictions in the form of constitutive functions of relativistic continuum physics resulting from the requirement of form-invariance under the Lorentz group. These functions are assumed to depend on the deformation gradient and a number of vectors. It is shown that the restricted forms are the relativistic extensions of similar expressions of classical continuum physics derived byRivlin.

Keywords

Constitutive Equation Deformation Gradient Lorentz Transformation Axial Vector World Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Формулирование конститутивных уравнений в релятивистской фиэике сплощных сред

Riassunto

In questo articolo si esaminano le restrizioni alla forma delle funzioni costitutive della fisica del continuo relativistico risultanti dalla condizione di invarianza rispetto alla forma nell’ambito del gruppo di Lorentz. Si suppone che queste funzioni dipendano dal gradiente di deformazione e da un certo numero di vettori. Si dimostra che le forme ristrette sono le estensioni relativistiche di espressioni similari della fisica classica del continuo dedotta da Rivlin.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    W. Noll:Arch. Rat. Mech. Anal.,2, 197 (1958/59).CrossRefGoogle Scholar
  2. (2).
    R. S. Rivlin:Arch. Rat. Mech. Anal.,4, 262 (1959/60).CrossRefGoogle Scholar
  3. (3).
    A. C. Pipkin andR. S. Rivlin:Arch. Rat. Mech. Anal.,4, 129 (1959/60).MathSciNetCrossRefGoogle Scholar
  4. (4).
    R. A. Grot andA. C. Eringen: Purdue University, School of Aero., Astro. Engr. Sci., Tech. Report No. 33 (1966).Google Scholar
  5. (5).
    G. A. Ramirez andG. Lianis:Acta Mech.,6/4, 326 (1968).CrossRefGoogle Scholar
  6. (6).
    H. Weyl:The Classical Groups, Their Invariants and Representations (Princeton, N. J., 1946).Google Scholar
  7. (7).
    F. G. Smith:Arch. Rat. Mech. Anal.,18, 282 (1965).CrossRefGoogle Scholar
  8. (8).
    A. J. M. Spencer andR. S. Rivlin:Arch. Rat. Mech. Anal.,9, 45 (1962).MathSciNetCrossRefGoogle Scholar
  9. (9).
    A. Bressan:Rendiconti del Seminario Matematico dell’Università di Padova,34, 74 (1964).MathSciNetGoogle Scholar
  10. (10).
    L. E. Bragg:Arch. Rat. Mech. Anal.,18, 127 (1965).MathSciNetCrossRefGoogle Scholar
  11. (11).
    G. Lianis andH. Curtis: Purdue University Report AA and ES 69-6 (May 1969).Google Scholar
  12. (12).
    P. Jordan, J. Ehlers, W. Kundt andR. K. Sachs:Akad. Wiss. Lit., Mainz, Abl. Math.-naturw., No. 11, 793 (1961).Google Scholar

Copyright information

© Società Italiana di Fisica 1970

Authors and Affiliations

  • G. Lianis
    • 1
  1. 1.Purdue UniversityLafayette

Personalised recommendations