Il Nuovo Cimento B (1965-1970)

, Volume 56, Issue 2, pp 323–326 | Cite as

Phase-space symmetries of a relativistic plasma

  • R. M. Santilli
Lettere Alla Redazione


Classical System Kepler Problem Relativistic Plasma Symmetry Approach Isotropic Harmonic Oscillator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    B. Kursunoglu:Symmetries of a relativistic plasma, to appear in theProc. of the Relativistic Plasma Symposium (New York).Google Scholar
  2. (2).
    Let us recall that the name «symmetry» is used in elementary-particle physics for denoting a group of transformations able to characterize a physical system.Google Scholar
  3. (3).
    The no-interaction theorem states that a finite number of classical particles cannot be represented by a theory including interactions if the theory is invariant under the inhomogeneous Lorent group. See, for instance:D. G. Currie, T. F. Jordan andE. C. G. Sudarshan:Rev. Mod. Phys.,35, 350 (1963);H. Leutwyler:Nuovo Cimento,37, 556 (1965);R. N. Hill:Journ. Math. Phys.,8, 201 (1967).ADSMathSciNetCrossRefGoogle Scholar
  4. (4).
    H. Bacry:Nuovo Cimento,41 A, 221 (1966);E. C. G. Sudarshan andN. Mukunda:Lecture in Theoretical Physics, vol.8B (Boulder, 1966);A. Loinger:Ann. of Phys.,20, 132 (1962);L. C. Biedenharn:Phys. Rev.,126, 845 (1962);N. Mukunda, L. O’Raifeartaigh andE. C. G. Sudarshan Phys. Rev. Lett.,15, 1041 (1965).ADSGoogle Scholar
  5. (5).
    H. Bacry, H. Ruegg andJ. M. Suriau:Comm. Math. Phys.,3, 323 (1966);D. M. Fradkin:Progr. Theor. Phys.,37, 798 (1967).ADSMathSciNetCrossRefGoogle Scholar
  6. (6).
    N. Mukunda:Phys. Rev.,155, 1383 (1967).ADSCrossRefGoogle Scholar
  7. (7).
    F. Duimio andM. Pauri:Nuovo Cimento,51 A, 1141 (1967).ADSCrossRefGoogle Scholar
  8. (8).
    B. Kursunoglu:Nuclear Fusion,1, 213 (1961).CrossRefGoogle Scholar
  9. (9).
    C. Chevalley:Theory of Lie Groups (Princeton, 1946);L. S. Pontryagin:Topological Groups (New York, 1966).Google Scholar
  10. (10).
    L. D. Landau andE. M. Lifshitz:Mechanics (London, 1960).Google Scholar
  11. (11).
    L. P. Eisenhart:Continuous Groups of Transformations (New York, 1963).Google Scholar
  12. (12).
    See ref. (11), pp. 281–291.Google Scholar
  13. (13).
    For investigation on theSU 3,1 group see, for instance,R. M. Santilli:Nuovo Cimento,51 A, 89 (1967).ADSMathSciNetCrossRefGoogle Scholar
  14. (14).
    M. Gell-Mann andY. Ne’eman:The Eightfold Way (New York, 1964).Google Scholar
  15. (15).
    F. Ström:Ark. f. Fys.,30, 455 (1965).Google Scholar

Copyright information

© Società Italiana di Fisica 1968

Authors and Affiliations

  • R. M. Santilli
    • 1
  1. 1.Center for Theoretical StudiesUniversity of MiamiCoral Gables

Personalised recommendations