Journal of Chemical Sciences

, Volume 118, Issue 1, pp 127–133 | Cite as

Line broadening in the PXRD patterns of layered hydroxides: The relative effects of crystallite size and structural disorder



Layered hydroxides crystallize in a hexagonal structure and incorporate a number of different types of structural disorders as an exigency of anisotropic bonding. Structural disorder contributes to the non-uniform broadening of lines in the powder X-ray diffraction pattern. Common among the disorders are stacking faults, which broaden theh0ℓ/0kℓ reflections. Interstratification selectively broadens the 00l reflections and turbostratic disorder broadens the 0kℓ reflections. The line broadening caused by structural disorder has to be discounted before estimates of particle size are made by applying the Scherrer formula.


Layered double hydroxides pyroaurite structural disorder stacking faults turbostraticity interstratification polytypes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    West A R 1998Solid state chemistry and its applications (New Delhi: John Wiley and Sons) p. 173Google Scholar
  2. 2.
    Bernard M C, Cortes R, Keddam M, Takenouti H, Bernard P and Senyarich S 1996J. Power Sources 63 247CrossRefGoogle Scholar
  3. 3.
    Ding Y, Zhang G, Wu H, Hai B, Wang L and Qian Y 2001Chem. Mater. 13 435CrossRefGoogle Scholar
  4. 4.
    Radha A V, Kamath P V and Subbanna G N 2003Mater. Res. Bull. 38 731CrossRefGoogle Scholar
  5. 5.
    Ramesh T N, Jayashree R S and Kamath P V 2003Clays Clay Miner. 51 570CrossRefGoogle Scholar
  6. 6.
    Cavani F, Trifiro F and Vaccari A 1991Catal. Today 11 173CrossRefGoogle Scholar
  7. 7.
    Carrado K A, Kostapapas A and Suib S L 1988Solid State Ionics 26 77CrossRefGoogle Scholar
  8. 8.
    Treacy M M J, Deem M W and Newsam J M Computer Code DIFFaX, Version 1.807Google Scholar
  9. 9.
    Treacy M M J, Newsam J M and Deem M W 1991Proc. R. Soc. London A433 499Google Scholar
  10. 10.
    Bellotto M, Rebours B, Clause O, Lynch J, Bazin D and Elkaim E 1996J. Phys. Chem. 100 8527CrossRefGoogle Scholar
  11. 11.
    Khaldi M, de Roy A, Chaouch M and Besse J P 1997J. Solid State Chem. 130 66CrossRefGoogle Scholar
  12. 12.
    Thomas G S, Rajamathi M and Kamath P V 2004Clays Clay Miner. 52 693CrossRefGoogle Scholar
  13. 13.
    Taylor H F W 1973Miner. Mag. 39 377CrossRefGoogle Scholar
  14. 14.
    Ennadi A, Khaldi M, de Roy A and Besse J P 1994Mol. Cryst. Liq. Cryst. 244 373CrossRefGoogle Scholar
  15. 15.
    Zhao Y, Li F, Zhang R, Evans D G and Duan X 2002Chem. Mater. 14 4286CrossRefGoogle Scholar
  16. 16.
    Kloprogge J T, Wharton D, Hickey L and Frost R L 2002Am. Miner. 87 623Google Scholar
  17. 17.
    Dobos D 1975Electrochemical data. A handbook for electrochemists in industry and universities (Amsterdam: Elseivier Scientific) p. 221Google Scholar
  18. 18.
    Bookin A S and Drits V A 1993Clays Clay Miner. 41551CrossRefGoogle Scholar
  19. 19.
    Bookin A S, Cherkashin V I and Drits V A 1993Clays Clay Miner. 41 558CrossRefGoogle Scholar
  20. 20.
    Ramesh T N, Kamath P V and Shivkumara C 2005J. Electrochem. Soc. 152 A806CrossRefGoogle Scholar
  21. 21.
    Jayashree R S and Kamath P V 2002J. Electrochem. Soc. 149 A761CrossRefGoogle Scholar
  22. 22.
    Jayashree R S, Kamath P V and Subbanna G N 2000J. Electrochem. Soc. 147 2029CrossRefGoogle Scholar
  23. 23.
    Ovshinsky S R, Fetcenko M A and Ross J 1993Science 260 176CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2006

Authors and Affiliations

  1. 1.Department of Chemistry, Central CollegeBangalore UniversityBangalore

Personalised recommendations