Journal of Chemical Sciences

, Volume 117, Issue 4, pp 311–316

Synthesis of Pt, Pd, Pt/Ag and Pd/Ag nanoparticles by microwave-polyol method

  • Kirti Patel
  • Sudhir Kapoor
  • Devilal Purshottam Dave
  • Tulsi Mukherjee
Article

Abstract

Pt, Pd, Pt-Ag and Pd-Ag bimetallic nanoparticles were synthesized in ethylene glycol and glycerol using the microwave technique in the presence of a stabilizer poly(N-vinylpyrrolidone) (PVP). It has been observed that PVP is capable of complexing and stabilizing nanoparticles. Mixed clusters were formed by simultaneous reduction of the metal ions. The clusters were characterized using UV-Vis spectra, XRD and dynamic light scattering. To understand the mechanism of formation of mixed nanoparticles, several experimental parameters such asin situ irradiation of mixed metal salts and mixing of individual sols were attempted.

Keywords

Mixed particles microwave optical absorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Daniel M C and Astruc D 2004Chem. Soc. Rev. 104 293Google Scholar
  2. 2.
    Schmid G 1992Chem. Rev. 92 1709CrossRefGoogle Scholar
  3. 3.
    Lewis L N 1993Chem. Rev. 93 2693CrossRefGoogle Scholar
  4. 4.
    Underwood S and Mulvaney P 1994Langmuir 10 3427CrossRefGoogle Scholar
  5. 5.
    Hostetler M J, Zhong C J, Yen BKH, Anderegg J, Gross S M, Evans N D, Porter M and Murray R W 1998J. Am. Chem. Soc. 120 9396CrossRefGoogle Scholar
  6. 6.
    Belloni J, Amblard J, Marignier L and Mostafavi M 1994Cluster of atoms and molecules (ed.) H Haberland (New York: Springer-Verlag) vol. 2, p. 290Google Scholar
  7. 7.(a)
    Henglein A 1989Chem. Rev. 89 1861;CrossRefGoogle Scholar
  8. 7.(b)
    Henglein A and Meisel D 1998J. Phys. Chem. B102 8364Google Scholar
  9. 8.
    Mulvaney P 1996Langmuir 12 788CrossRefGoogle Scholar
  10. 9.
    Dimitrijevic N M, Bartels D M, Jonah C D, Takahashi K and Rajh T 2001J. Phys. Chem. B105 954Google Scholar
  11. 10.
    Harada M, Asakura K, Ueki Y and Toshima N 1993J.Phys. Chem. 97 5103CrossRefGoogle Scholar
  12. 11.
    Sun S, Murry C B, Weller D, Folks L and Moser 1989Science 287 2000Google Scholar
  13. 12.
    Yonezawa T and Toshima N 1995J. Chem. Soc. Farady Trans. 91 4111CrossRefGoogle Scholar
  14. 13.
    Link S, Wang S Z L and El-Sayed M A 1999J. Phys. Chem. B103 3529Google Scholar
  15. 14.
    Esumi K, Shiratori M, Ishizuka H, Tano T, Torigoe K and Meguro K 1991Langmuir 7 457CrossRefGoogle Scholar
  16. 15.
    Silvert P Y, Vijaykrishnan V, Vibert P, HerreraUrbina R and Elhsissen K T 1996Nanostruct. Mater. 7611Google Scholar
  17. 16.
    Liz-Marzan L M and Philipse A P 1995J. Phys. Chem. 99 15120CrossRefGoogle Scholar
  18. 17.
    Sato T, Kurado S, Takami A, Yonezawa Y and Hada H1991Appl. Organomet. Chem. 5 261CrossRefGoogle Scholar
  19. 18.
    Marignier J L, Belloni J, Delcourt M O and Chevalier J P 1985Nature (London) 317 344CrossRefGoogle Scholar
  20. 19.
    Hodak J H, Henglein A, Giersig M and Hartland G V 2000J. Phys. Chem. B104 11708Google Scholar
  21. 20.
    Chen Y and Yeh C S 2000Chem. Commun. 371Google Scholar
  22. 21.
    Remita S, Mostafavi M and Delcourt M O 1996Radiat. Phys. Chem. 47 275CrossRefGoogle Scholar
  23. 22.
    Belloni J, Mostafavi M, Remita S, Marignier J L and Delcourt M O 1998New J. Chem. 1239Google Scholar
  24. 23.
    Wang Y and Toshima N 1997J. Phys. Chem. B101 5301Google Scholar
  25. 24.
    Schmid G, West H, Malm J O, Bovin J O and Grenthe C 1996Chem. Eur. J. 2 1099CrossRefGoogle Scholar
  26. 25.
    Toshima N, Yonezawa T and Kushihashi K 1993J. Chem. Soc., Faraday Trans. 89 2537CrossRefGoogle Scholar
  27. 26.
    Yonezawa T and Toshima N N 1993J. Mol. Catal. 83 167CrossRefGoogle Scholar
  28. 27.
    Toshima N and Hirakawa K 1997Appl. Surf. Sci. 121/122 534CrossRefGoogle Scholar
  29. 28.
    Torigoe K, Nakajima Y and Esumi K 1993J. Phys. Chem. 97 8304CrossRefGoogle Scholar
  30. 29.
    Creighton J A and Eadon D G 1991J. Chem. Soc. Farady Trans. 87 3881CrossRefGoogle Scholar
  31. 30.
    Doudna C M, Bertino M F, Blum F D, Tokuhiro A T, Lahiri-Dey D, Chattopadhyay S and Terry J 2003J. Phys. Chem. B107 2996Google Scholar
  32. 31.
    Yasuda H and Mori H 1992Phys. Rev. Lett. 69 3747CrossRefGoogle Scholar
  33. 32.
    Mostafavi M, Marignier J L, Amblard J and Belloni J 1989Radiat. Phys. Chem. 34 605Google Scholar
  34. 33.
    Wong W, Efrima S and Regev O 1989Langmuir 14 602CrossRefGoogle Scholar
  35. 34.(a)
    Petit C, Lixon P and Pileni M P 1993J. Phys. Chem. 97 12974;CrossRefGoogle Scholar
  36. 34.(b)
    Pileni M P 1997Langmuir 13 3266;CrossRefGoogle Scholar
  37. 34.(c)
    Pileni M P 1993J. Phys. Chem. 97 6961CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2005

Authors and Affiliations

  • Kirti Patel
    • 1
  • Sudhir Kapoor
    • 2
  • Devilal Purshottam Dave
    • 1
  • Tulsi Mukherjee
    • 2
  1. 1.Department of ChemistryThe Institute of ScienceMumbaiIndia
  2. 2.Radiation Chemistry & Chemical Dynamics DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations