Journal of Biosciences

, Volume 31, Issue 5, pp 575–579

Vitamin C improves basal metabolic rate and lipid profile in alloxan-induced diabetes mellitus in rats

  • D. U. Owu
  • A. B. Antai
  • K. H. Udofia
  • A. O. Obembe
  • K. O. Obasi
  • M. U. Eteng
Article

Abstract

Diabetes mellitus (DM) is a multi-factorial disease which is characterized by hyperglycaemia, lipoprotein abnormalities and oxidative stress. This study evaluated effect of oral vitamin C administration on basal metabolic rate and lipid profile of alloxan-induced diabetic rats. Vitamin C was administered at 200 mg/kg body wt. by gavage for four weeks to diabetic rats after which the resting metabolic rate and plasma lipid profile was determined. The results showed that vitamin C administration significantly (P<0.01) reduced the resting metabolic rate in diabetic rats; and also lowered plasma triglyceride, total cholesterol and low-density lipoprotein cholesterol. These results suggest that the administration of vitamin C in this model of established diabetes mellitus might be beneficial for the restoration of basal metabolic rate and improvement of lipid profile. This may at least in part reduce the risk of cardiovascular events seen in diabetes mellitus.

Keywords

Ascorbic acid diabetes mellitus lipid profile metabolic rate vitamin C 

Abbreviations used

BMR

Basal metabolic rate

DM

diabetes mellitus

HDL

high density lipoprotein

LDL

low density lipoprotein

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson J W, Gowri M S and Turner J 1999 Antioxidant supplementation effects on low-density lipoprotein oxidation for individuals with type 2 diabetes mellitus;J. Am. Coll. Nutr. 18 451–461PubMedGoogle Scholar
  2. Avesani C M, Cuppari L, Silva A C, Sigulem D M, Cendoroglo M, Sesso R and Draibe S A 2001 Resting energy expenditure in pre-dialysis diabetic patients;Nephrol. Dial. Transplant. 16 556–560PubMedCrossRefGoogle Scholar
  3. Betteridge D J 1994 Diabetic dyslipidemia;Am. J. Med. (Suppl. 6A)96 255–315Google Scholar
  4. Bhakdi S, Lackner K K, Han S R, Torzewski M and Husmann M 2004 Beyond cholesterol: The enigma of atherosclerosis revisited;Thromb. Haemost. 91 639–645PubMedGoogle Scholar
  5. Caballero A E, Srora S, Saouaf R, Lim S C, Smakowscki P, Park J Y, King G L, Lo Gerfo F W, Horton E S and Veves A 1999 Microvascular and macrovascular reactivity is reduced in subjects at risk for type 2 diabetes;Diabetes 48 1856–1862PubMedCrossRefGoogle Scholar
  6. Ceriello A and Motz E 2004 Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited;Arterioscler. Thromb. Vasc. Biol. 24 816–823PubMedCrossRefGoogle Scholar
  7. Franssila-Kallunki A and Groop L 1992 Factors associated with basal metabolic rate in patients with type II diabetes melliltus;Diabetologia 35 962–966PubMedCrossRefGoogle Scholar
  8. Felmeden D C, Spencer C G, Blann A D, Beevers D G and Lip G Y 2003 Low-density lipoprotein subfraction and cardiovascular risk in hypertension: Relationship to endothelial dysfunction and effects of treatment;Hypertension 41 528–533PubMedCrossRefGoogle Scholar
  9. Fontvielli A M, Lillioja S, Ferraro R T, Schulz L O, Rising R and Ravussin E 1992 Twenty four hour energy expenditure in Pima Indians with type II (non insulin dependent) diabetes mellitus;Diabetologia 35 753–759Google Scholar
  10. Guyton A C and Hall J E 2006Textbook of medical physiology 11th edition (Philadelphia: Elsevier Saunder) pp 884–888Google Scholar
  11. Hoar WS, Hickman Jr G P 1975A laboratory comparison for general and comparative physiology 2nd edition (Prentice-Hall)Google Scholar
  12. Kamata K and Yamashita K 1999 Insulin resistance and impaired endotheliium-dependent renal vasodilation in fructose-fed hypertensive rats;Res. Commun. Mol. Pathol. Pharmacol. 103 195–200PubMedGoogle Scholar
  13. Kamata K, Kanie N and Inose A 2001 Mechanisms underlying attenuated conntractile respoonse of aortic rings to noradrenaline in fructose-fed mice;Eur. J. Pharmacol. 428 241–249PubMedGoogle Scholar
  14. Kaviarasan K, Arjunan M M and Pugalendi K V 2005 Lipid profile, oxidant-antioxidant status and glycoprotein components in hyperlipidemic patients with/without diabetes;Clin. Chim. Acta 362 49–56PubMedCrossRefGoogle Scholar
  15. Kurowska E M, Spence J D, Jordan J, Wetmore S, Freeman D J, Piche L A and Serratore P 2000 HDL-cholesterol-raising effect of orange juice in subjects with hypercholesterolemia;Am. J. Clin. Nutr. 72 1095–1100PubMedGoogle Scholar
  16. Nawata K, Sohmiya M, Kawaguchi M, Nishiki M and Kato Y 2004 Increased resting metabolic rate in patients with Type 2 diabetes mellitus accompanied by advanced diabetic nephropathy;Metabolism 531395–1398PubMedCrossRefGoogle Scholar
  17. Osim E E, Owu D U, Isong E U and Umoh I B 1994 Influence of chronic consumption of thermoxidized and fresh palm oil diets on basal metabolic rate, body weight and morphology of tissues in rats;Discovery Innovation 6 389–396Google Scholar
  18. Paolisso G, D’Amore A, Balbic V, Volpe C, Galzerano D, Guigliano D, Sgambato S, Varricchio M and D’Onofrio F 1994 Plasma Vitamin C affects glucose homeostasis in healthy subjects and in non-insulin-dependent diabetics;Am. J. Physiol. 266 E261-E268PubMedGoogle Scholar
  19. Regensteiner J G, Sippel J, McFarling E T, Wolfel E E and Hiatt W R 1995 Effects of non-insulin dependent diabetes on maximal exercise performance;Med. Sci. Sports Exerc. 27 875–881PubMedGoogle Scholar
  20. Regensteiner J G, Bauer T A, Reusch J E B, Brandenburg S L, Sippel J M, Vogelsong A M, Smith S, Wolfel E E, Eckel R H and Hiatt W R 1998 Abnormal oxygen uptake kinetic responses in women with type 11 diabetes mellitus,J. Appl. Physiol. 85 310–317PubMedGoogle Scholar
  21. Roy T M, Peterson H R, Snider H L, Cyrus J, Vasti L B, Fell R D and Rothchild E 1989 Autonomic influence on cardiovascular performance in diabetic subjects;Am. J. Med. 87 382–388PubMedCrossRefGoogle Scholar
  22. Scoppola A, Montecchi F R, Mezinger G and Lala A 2001 Urinary mevalonate excretion rate in type 2 diabetes: role of metabolic control;Atherosclerosis 156 357–361PubMedCrossRefGoogle Scholar
  23. Shahar E, Chambless L E, Rosamond W D, Boland L L, Ballantyne C M, McGovern P G and Sharnett A R 2003 Atherosclerosis risk in community study, plasma lipid profile and incident ischaemic stroke: the atherosclerosis risk in communities (ARIC) study;Stroke 34 623–631PubMedCrossRefGoogle Scholar
  24. Sheweita S A, Newairy A A, Mansour H A and Yousef M I 2002 Effect of some hypoglycemic herbs on the activity of phase I and II drug-metabolising enzymes in alloxan-induced diabetic rat;Toxicology 174 131–139PubMedCrossRefGoogle Scholar
  25. Simoneau JA and Kelley D E 1997 Altered glycolytic and oxidative capacities of skeletal muscle contribute to insulin resistance in NIDDM;J. Appl. Physiol. 83 166–171PubMedGoogle Scholar
  26. Sowers J R and Melvin A L 1999 Diabetes and cardiovascular disease;Diabetes Care 22 c14-c20PubMedGoogle Scholar
  27. Unwin N, Sobngwi E and Alberti K G M M 2001 Type 2 diabetes: The challenge of preventing a global epidemic;Diabetes Int. 11 4–8Google Scholar
  28. White A, Handler P, Smith E L, Hill R L and Lehman I R 1994Principles of biochemistry 7th edition (Tokyo: McGrawHill Kogakusha Ltd) pp 619–630Google Scholar
  29. Young I S and Woodside J V 2001 Antioxidants in health and disease;J. Clin. Pathol. 54 176–186PubMedCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2006

Authors and Affiliations

  • D. U. Owu
    • 1
  • A. B. Antai
    • 1
  • K. H. Udofia
    • 1
  • A. O. Obembe
    • 1
  • K. O. Obasi
    • 1
  • M. U. Eteng
    • 2
  1. 1.Department of PhysiologyCollege of Medical Sciences University of CalabarCalabarNigeria
  2. 2.Department of BiochemistryCollege of Medical Sciences University of CalabarCalabarNigeria

Personalised recommendations